
Polyspace® Bug Finder™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Release Notes
© COPYRIGHT 2013–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

Analysis Setup . 1-2

Simulink Support: Start Polyspace analysis without an explicit code
generation step . 1-2

Configuration from Build System: Specify options delimiter and suppress
console output . 1-2

Configuration from Build System: Improved detection of incompatible
software . 1-3

Updated GCC Compiler Support: Set up Polyspace analysis for code
compiled with GCC version 8.x . 1-3

Updated Microsoft Visual C++ Support: Set up a Polyspace analysis for
code compiled with Visual Studio 2019 . 1-3

Modifying Checker Behavior: Modify parameters for MISRA C:2012 rules
1.1 and 5.1 to 5.5 . 1-4

polyspacesetup Function: Integrate Polyspace with MATLAB in fewer steps
. 1-4

pslinkrunCrossRelease Function: Analyze code generated in an earlier
release of Simulink by using a later release of Polyspace 1-5

Functionality being removed: Compilation assistant 1-5
Changes in analysis options and binaries . 1-6

Analysis Results . 1-7

AUTOSAR C++14 Support: Check for 327 AUTOSAR C++14 rules including
19 new rules in R2021a . 1-7

CERT C++ Support: Check for memory management and programming rule
violations. 1-8

MISRA C++:2008 Support: Check for disallowed pointer arithmetic 1-9
MISRA C:2012 Support: Checkers updated to account for MISRA C:2012

Technical Corrigendum 1 and Amendment 2 . 1-9
Guidelines: New checkers for software complexity defects 1-11
JSF AV C++ Support: Check for cases where pass-by-reference is preferred

to pass-by-pointer . 1-12
New Bug Finder Checkers: Check for inefficient string operations,

noncompliance with AUTOSAR Standard specifications, and other issues
. 1-12

Changes to coding rules checking . 1-13
Updated Bug Finder defect checkers . 1-18

Reviewing Results . 1-20

Simulink Block Annotation: Add multiple Polyspace annotations
corresponding to multiple types of Polyspace results 1-20

iii

Contents

R2020b

Analysis Setup . 2-2

Compiler Support: Set up Polyspace analysis for code compiled by Renesas
SH C compilers . 2-2

Cygwin Support: Create Polyspace projects automatically by using Cygwin
3.x build commands . 2-2

C++17 Support: Run Polyspace analysis on code that has C++17 features
. 2-2

Modifying Checker Behavior: Check for non-initialized buffers when passed
by pointer to certain functions . 2-3

polyspacePackNGo Function: Generate and package Polyspace option files
from a Simulink model . 2-3

Polyspace and MATLAB Integration: Integrate Polyspace with MATLAB
programmatically without user interaction . 2-4

polyspace.ModelLinkOptions Object: Configure object to analyze code
generated as a model reference . 2-4

Configuration from Build System: Generate a project file or analysis options
file by using a JSON compilation database . 2-4

Configuration from Build System: Specify how Polyspace imports compiler
macro definitions . 2-5

Configuration from Build System: Compiler configuration cached from prior
runs for improved performance . 2-5

Changes in analysis options and binaries . 2-5

Analysis Results . 2-7

AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules including
61 new rules in R2020b . 2-7

CERT C Support: Check for missing const-qualification and use of
hardcoded numbers . 2-12

CERT C++ Support: Check for exception handling issues, memory
management problems, and other rule violations 2-13

MISRA C++:2008 Support: Check for commented out code, variables used
once, exception handling issues, and other rule violations 2-13

JSF AV C++ Support: Check for commented out code and methods that can
be inlined . 2-14

MISRA C Support: Check for commented out code 2-14
New Bug Finder Defect Checkers: Check for post-C++11 defects such as

problematic move operations, missing constexpr, and noexcept violations
. 2-15

Changes to coding rules checking . 2-15
Updated Bug Finder defect checkers . 2-21
Updated code metrics specifications . 2-23

Reviewing Results . 2-25

Results Export: Export Polyspace results to external formats such as SARIF
JSON . 2-25

Simulink Block Annotation: Annotate Simulink blocks from Polyspace user
interface to justify Polyspace results . 2-25

User Authentication: Use a credentials file to pass your Polyspace Access
credentials at the command line . 2-25

iv Contents

Importing Review Information: Accept information in source or destination
results folder in case of merge conflicts . 2-26

Source Code Tooltips: Display information related to only the currently
selected defect . 2-26

Functionality being removed: Polyspace Metrics 2-27

R2020a

Analysis Setup . 3-2

Compiler Support: Set up Polyspace analysis easily for code compiled with
MPLAB XC8 C compilers . 3-2

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and
XC32 compilers . 3-2

Source Code Encoding: Non-ASCII characters in source code analyzed and
displayed without errors . 3-2

Modifying Checkers: Create list of functions to prohibit and check for use of
functions from the list . 3-3

Simulink Support: Analyze custom C code in C Function blocks 3-3
Changes in analysis options and binaries . 3-3
Changes in MATLAB functions, options object and properties 3-4

Analysis Results . 3-5

Extending Checkers: Run stricter analysis that considers all possible values
of system inputs . 3-5

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes, special
member functions, overloading and other groups 3-6

CERT C Support: Check for CERT C rules related to threads and hardcoded
sensitive data, and recommendations related to macros and code
formatting . 3-9

CERT C++ Support: Check for CERT C++ rule related to hard coded
sensitive data, order of initialization in constructor and other issues . . 3-10

CWE Support: Check for CWE rule related to incorrect block delimitation
. 3-10

New Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and other issues 3-10

Changes to coding rules checking . 3-13
Updated Bug Finder defect checkers . 3-14

Reviewing Results . 3-16

Extending Checkers: See example value for defect found with stricter
analysis . 3-16

v

R2019b

Analysis Setup . 4-2

Compiler Support: Set up Polyspace analysis easily for code compiled with
Cosmic compilers . 4-2

Simulink Support: Analyze generated code by using contextual buttons on
the Simulink Editor toolstrip . 4-2

Simulink Support: Verify custom code called from C Caller blocks and
Stateflow charts in context of model . 4-3

Simulink Support: Compare two Polyspace result sets and see the effect of
changes in model or code generation parameters 4-4

Configuration from Build System: Compiler version automatically detected
from build system . 4-4

Changes in MATLAB functions, options object and properties 4-5

Analysis Results . 4-7

AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and other issues 4-7

CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and other issues . 4-8

CERT C Support: Check for undefined behavior from successive joining or
detaching of the same thread . 4-8

New Bug Finder Defect Checkers: Check for new security vulnerabilities,
multithreading issues, missing C++ overloads, and other issues 4-9

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be used
. 4-9

Updated Bug Finder defect checkers . 4-9

Reviewing Results . 4-11

Code Annotations: Justify Bug Finder results by using annotations spread
over multiple lines . 4-11

R2019a

Analysis Setup . 5-2

Polyspace-only Licenses: Install Polyspace without MATLAB installation
. 5-2

New Polyspace Products Supporting Continuous Integration: Perform
automated code analysis after code submission with Polyspace Bug
Finder Server and Polyspace Bug Finder Access 5-2

Offloading Polyspace Analysis to Servers: Use Polyspace desktop products
on client side and server products on server side 5-3

Support for Security Standards: Check explicitly for subsets of CERT C,
CERT C++ or ISO/IEC TS 17961 rules . 5-5

vi Contents

Coding Standard Support: Enforce common standards across team or
organization by reusing checker configuration 5-6

Collaborative Review Support: Upload results from Polyspace user interface
to Polyspace Access web interface and share results using web links . . 5-7

Compiler Support: Set up Polyspace analysis easily for code compiled with
ARM v5 and v6 compilers . 5-9

Updated GCC, Clang, and Visual C++ Compiler Support: Set up Polyspace
analysis easily for code compiled with GCC versions 7.x, Clang versions
4.x or 5.x, or Microsoft Visual C++ 2017 compilers 5-10

Simulink Toolstrip: Analyze generated code using contextual buttons in
Simulink Editor . 5-11

Changes in analysis options and binaries . 5-11
Changes in MATLAB functions, options object and properties 5-13

Analysis Results . 5-17

AUTOSAR C++14 Support: Check for violations of rules from the AUTOSAR
C++14 coding standard . 5-17

Improved CERT C++ Support: Check for missing overloads, ambiguous
declaration syntax and other rules from CERT C++ Coding Standard
. 5-17

Recursion Detection: See list of recursion cycles in C/C++ project 5-18
New Bug Finder Defect Checkers: Check for misplaced CV qualifiers, C++

most vexing parse, ill-constructed variadic functions, and other issues
. 5-18

Updated code metrics specifications . 5-19
Updated Bug Finder defect checkers . 5-21

Reviewing Results . 5-23

Support for Security Standards: See CERT C, CERT C++ or ISO/IEC TS
17961 rule violations explicitly in Polyspace analysis results and reports
. 5-23

Bug Fix Suggestions: See possible fixes for types of defects found by Bug
Finder . 5-24

Source Code Navigation: Keep result pinned while navigating through
source code . 5-24

Report Generation: Generate Polyspace reports faster than previous
releases . 5-26

Report Generation: Generate single file for HTML reports 5-26

R2018b

Analysis Setup . 6-2

Configuration from Build System: Automatically generate Polyspace
configuration modules from build system . 6-2

C11 and C++14 Support: Run Polyspace analysis on code with C11 or C+
+14 features . 6-3

Autodetection of Concurrency Primitives: Multitasking model detected from
C11 multithreading functions . 6-3

vii

Compiler Support: Set up Polyspace analysis easily for code compiled with
Renesas compilers . 6-3

Changes in analysis options and binaries . 6-4
Changes in MATLAB option object properties and option values 6-5

Analysis Results . 6-7

CERT C++ Support: Identify CERT C++ violations by using defect checkers
and coding rules . 6-7

Improved CERT C Support: Check for precision loss, blocking operations,
and other rules from the CERT C Coding Standard 6-8

Constant Overflows: Check for overflows on integer constants 6-9
Updated Bug Finder defect checkers . 6-9
Changes to coding rules checking . 6-10

Reviewing Results . 6-11

Function Call Hierarchy: View call tree of functions in source code 6-11
Header Files Access: Open your project header files directly from the point

of inclusion . 6-11

R2018a

Analysis Setup . 7-2

AUTOSAR Support: Set up Polyspace multitasking configuration
automatically from an AUTOSAR description . 7-2

MATLAB Coder Support: Run Polyspace on C/C++ code generated from
MATLAB code without additional setup . 7-2

Compiler Support: Set up Polyspace analysis easily for code compiled with
Texas Instruments, IAR or CodeWarrior compilers 7-3

Updated GCC and Clang Compiler Support: Set up Polyspace analysis easily
for code compiled with GCC versions 5.x or 6.x, or Clang version 3.x
compilers . 7-4

Configuration from Build System: Include or exclude sources when
generating Polyspace project using polyspace-configure 7-5

Support for IBM Rational Rhapsody to be removed 7-5
Changes in analysis options and binaries . 7-5
Changes in MATLAB option object properties . 7-8

Analysis Results . 7-11

CERT C Support: Check for information leakage, invalid environment
pointers, and other rules from the CERT C Coding Standard 7-11

Cryptography Checkers: Check for security vulnerabilities such as incorrect
use of public key cryptography routines . 7-12

MISRA C++ Support: Check for overriding of standard library functions,
missing const qualifiers, and other MISRA C++ rules 7-13

MISRA C:2012 Directive 4.8: Detect opportunities for data hiding 7-14
Rule for Source Line Length: Constrain number of characters per line in

your code . 7-14

viii Contents

Improved Fast Analysis: Find some multi-file MISRA C violations in fast
analysis . 7-14

Reviewing Results . 7-15

Concurrency Modeling: View all tasks and interrupts extracted from code
and Polyspace configuration in one view . 7-15

Data Races: Distinguish write-write conflicts from more benign read-write
conflicts . 7-16

R2017b

Analysis Setup . 8-2

Green Hills Compiler Support: Set up Polyspace analysis easily for code
compiled with Green Hills MULTI Compiler . 8-2

OSEK Multitasking Support: Detect the multitasking configuration for your
OSEK application automatically . 8-2

Incremental Analysis in Eclipse: Detect bugs as you type and save code in
your Eclipse IDE . 8-3

Polyspace API in MATLAB: Configure analysis, run analysis, and read
analysis results with a single MATLAB object . 8-3

Compiler-Specific Keywords: Nonstandard compiler-specific keywords are
only supported when you specify compiler . 8-5

POSIX and BSD Standards: Use functions from these standards without
additional setup . 8-5

Changes in analysis options and binaries . 8-5

Analysis Results . 8-9

Security Standards Support: Detect violations of all secure coding
guidelines from ISO/IEC Technical Specification 17961:2013 and more
guidelines from SEI CERT C Coding Standard . 8-9

MISRA C:2012 Directive 1.1: Detect instances of implementation-specific
behavior in your code . 8-10

Changes to coding rule checking . 8-10

Reviewing Results . 8-12

Result Review Workflow: Hide results that you reviewed once and justified
through source code annotations . 8-12

Code Annotations: Justify results or define your own format with a new
annotation format . 8-13

MISRA Comments and Code Annotations: Import your existing MISRA
C:2004 justifications to MISRA C:2012 results 8-13

Results Review Workflow: Sort and filter results by subtype 8-14
Constraint Specification: Navigate easily to the constraint specification

interface for Bug Finder results . 8-15
Result Status: Assign statuses that directly correspond to stages of

development workflow . 8-16

ix

R2017a

Analysis Setup . 9-2

Unified User Interface: Create and maintain a single Polyspace project for
Bug Finder and Code Prover analysis . 9-2

Easier Compliance with Security Standards: Choose CWE, CERT C99, or
ISO/IEC TS 17961 coding standard and address corresponding violations
through Polyspace results and security reports 9-5

Incremental Analysis of Specific Checks: Analyze only files edited since
previous analysis to quickly find new defects and coding rule violations
. 9-6

TASKING Compiler Support: Set up Polyspace analysis easily for code
compiled with Altium TASKING compiler . 9-7

Updated Visual C++ Support: Set up Polyspace analysis easily for code
compiled with Microsoft Visual C++ 2015 compiler 9-7

Autodetection of Concurrency Primitives: Multitasking model detected from
Windows, μC/OS II or C++11 multithreading functions 9-8

Autodetection of Concurrency Primitives: Map Unsupported Thread
Creation Functions to Supported Functions . 9-8

Manual Multitasking Setup: Specify routines that disable and reenable all
interrupts . 9-9

Specifying Function Names for Options: Choose from prepopulated list in
user interface instead of entering manually . 9-11

Polyspace API in MATLAB: Create MATLAB objects from Polyspace projects
to run analysis . 9-11

Support for 128-bit variables . 9-12
Improvement in automatic project creation from build systems 9-12
Changes in analysis options and binaries . 9-12
Changes in MATLAB option object properties . 9-16
Change in temporary folder location . 9-17

Analysis Results . 9-18

Additional Defect Checkers for Security: Check for security vulnerabilities
such as incorrect use of cryptographic routines 9-18

MISRA Amendment Support: Check your code for new security guidelines in
MISRA C:2012 Amendment 1 . 9-20

New Code Metrics: See number of lines in header files and number of local
variables per function . 9-21

Changes to coding rule checking . 9-21

Reviewing Results . 9-23

Folder Names in Results: Filter or organize analysis results by source folder
names . 9-23

Code to Model Traceability: Switch easily between identifiers in generated
code and corresponding blocks in model . 9-23

Polyspace API in MATLAB: Read Polyspace analysis results from MATLAB
. 9-25

Double Lock and Other Concurrency Defects: Get help investigating the
defects using detailed control flow information 9-25

Spreadsheet of Checkers: Use spreadsheet to keep track of checkers that
you enable . 9-26

x Contents

R2016b

Analysis Setup . 10-2

Diab Compiler Support: Set up Polyspace analysis easily for code compiled
with Wind River Diab compiler . 10-2

Multitasking Code Analysis Setup: Specify cyclic tasks and nonpreemptable
interrupts directly as analysis options . 10-2

Improved source and include folder management 10-2
Writable Examples: Modify example projects and restore original versions

. 10-3
Run analysis on .psprj file from the command line 10-3
Support for local threads . 10-3
Polyspace API in MATLAB: Configure and run Polyspace using MATLAB

objects . 10-4
Configuration Parameters Help: View descriptions of Polyspace options in

Simulink configuration parameters . 10-4
Eclipse Build Support: Set up Polyspace analysis from Eclipse build

command . 10-5
Visual Studio 2010 add-in support to be removed from installation 10-5
Support for Rhapsody 8.1 . 10-5
DOS Mode Warning on Linux: Compilation warning for DOS inconsistencies

. 10-5
Faster Restart for Remote Verification: Reuse compilation results from a

previous analysis . 10-6
Changes in Target & Compiler analysis options . 10-6
Changes in analysis options and binaries . 10-7

Analysis Results . 10-9

CERT C Support: Identify CERT C violations using defect checkers and
coding rules . 10-9

Local Variable Size Estimation: Find total size of local variables in a function
. 10-10

Metrics for C++ Templates: View code complexity metrics for instances of C
++ templates . 10-11

Changes to coding rule checking . 10-11
Updated Bug Finder defect checkers . 10-12

Reviewing Results . 10-14

Data Race Graphs: Fix data race defects easily using graphical view of
function call sequence . 10-14

Interactive Graphical Display: Click graphs on Dashboard to filter results
. 10-14

Event History for Coding Rules: Navigate easily between two locations in
code that together cause a rule violation . 10-15

Results in Macros Consolidated: View coding rule violations and defects on
macro definitions instead of macro instances 10-15

Analysis Objectives in Eclipse: Create review scopes to focus your review
. 10-15

Filtered Report: Reuse result filters for generated report 10-16
Results Export: Export results to text file for computing graphs and

statistics . 10-16

xi

Coding Rules in Report: View improved presentation of coding rules
violations in report . 10-16

English Reports in Non-English Locales: Generate English reports on
operating systems with a different language 10-17

Change in report template location . 10-17
Improved PDF Report Generation . 10-17
Changes in Polyspace User Interface . 10-17

R2016a

Analysis Setup . 11-2

Files to Review: Generate results for only specified files and folders 11-2
Faster MISRA Checking: Check coding rules more quickly and efficiently

. 11-2
S-Function Analysis: Launch analysis of S-Function code from Simulink

. 11-2
Import signal ranges from model for generated code analysis 11-3
Polyspace Metrics Tomcat Upgrade: Use upgraded default Tomcat server or

custom Tomcat version . 11-3
Polyspace Metrics Interface Updated: View project and metrics summary

and defect impact . 11-3
Source Code Search: Search huge applications more quickly 11-3
Default Layouts: Switch easily between project setup and results review in

user interface . 11-4
Files Not Compiled: Receive alerts about compilation errors in dashboard

and reports . 11-4
Project Language Flexibility: Change your project language at any time

. 11-4
Improvements in automatic project creation from build command 11-4
Polyspace TargetLink plug-in supports data from structures 11-5
Changes in analysis options . 11-5

Analysis Results . 11-7

Improvements to defect checkers . 11-7
Improvements in checking of previously supported MISRA C rules 11-7
Standards Mapped to Defects: Observe coding standards using Polyspace

Bug Finder . 11-8

Reviewing Results . 11-9

More results available in real time . 11-9
Autocompletion for Review Comments: Partially type previous comment to

select complete comment . 11-9
Persistent Filter States: Apply filters once and view filtered results across

multiple runs . 11-9
Polyspace Eclipse plug-in results location moved 11-9

xii Contents

R2015aSP1

Bug Fixes

R2015b

Analysis Setup . 13-2

Mixed C/C++ Code: Run analysis on entire project with C and C++ source
files . 13-2

Autodetection of Multitasking Primitives: Analyze source code with
multitasking primitives from POSIX and VxWorks without manual setup
. 13-2

Microsoft Visual C++ 2013: Analyze code developed in Microsoft Visual C+
+ 2013 . 13-3

GNU 4.9 and Clang 3.5 Support: Analyze code compiled with GNU 4.9 or
Clang 3.5 . 13-3

Improvements to automatic project creation from build command 13-3
Start Page: Get oriented with Polyspace Bug Finder 13-4
Saved Layouts: Save your preferred layouts of the Polyspace user interface

. 13-4
Renaming of labels in Polyspace user interface . 13-5
Including options multiple times . 13-5
Updated Support for TargetLink . 13-6
Changes in analysis options . 13-6
Binaries removed . 13-8
Support for Visual Studio 2008 to be removed . 13-8
Import Visual Studio project removed . 13-9

Analysis Results . 13-10

More Defect Categories: Detect security vulnerabilities, resource
management issues, object oriented design issues 13-10

Complete MISRA C:2012 Support: Detect violations of all MISRA C:2012
rules . 13-10

Improvements in checking of previously supported MISRA C rules 13-11
Changes to Bug Finder Defects . 13-12

Reviewing Results . 13-19

Results in Real Time: View results as they are produced 13-19
Improved Eclipse Support: View results embedded in source code and

context-sensitive help . 13-19
Defects Classified by Impact: Prioritize defect review by using the impact

attribute assigned to each defect type . 13-20
Improved Review Capability: View result details and add review comments

in one window . 13-20
Enhanced Review Scope: Filter coding rule violations from display in one

click . 13-21
Configuration Associated with Result Not Opened by Default 13-21

xiii

Improvements in Report Templates . 13-21
XML and RTF report formats removed . 13-21

R2015a

Analysis Setup . 14-2

Simplified workflow for project setup and results review with a unified user
interface . 14-2

Search improvements in the user interface . 14-2
Option to specify program termination functions 14-3
Support for GCC 4.8 . 14-3
Polyspace plug-in for Simulink improvements . 14-3
Polyspace binaries being removed . 14-4
Import Visual Studio project being removed . 14-4

Analysis Results . 14-5

Changes to Bug Finder defects . 14-5
Improvements in coding rules checking . 14-5

Reviewing Results . 14-7

Code complexity metrics available in user interface 14-7
Context-sensitive help for code complexity metrics, MISRA-C:2012, and

custom coding rules . 14-7
Review of latest results compared to the last run 14-7
Simplified results infrastructure . 14-7
Default statuses to justify results . 14-8
Filters to limit display of results . 14-8

R2014b

Analysis Setup . 15-2

Parallel compilation for faster analysis . 15-2
Support for Mac OS . 15-2
Support for C++11 . 15-2
Code editor in Polyspace interface . 15-2
Ignore files and folders during analysis . 15-2
Simulink plug-in support for custom project files 15-3
TargetLink support updated . 15-3
AUTOSAR support added . 15-3
Remote launcher and queue manager renamed . 15-3
Improved global menu in user interface . 15-4
Improved Project Manager perspective . 15-4
Polyspace binaries being removed . 15-4
Import Visual Studio project being removed . 15-5

xiv Contents

Analysis Results . 15-6

Support for MISRA C:2012 . 15-6
Additional concurrency issue detection (deadlocks, double locks, and

others) . 15-6
New and updated defect checkers . 15-7

Reviewing Results . 15-9

Context-sensitive help for analysis options and defects 15-9
Improved Results Manager perspective . 15-9
Error mode removed from coding rules checking 15-9

R2014a

Analysis Setup . 16-2

Automatic project setup from build systems . 16-2
Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects . . . 16-2
Simplification of coding rules checking . 16-2
Preferences file moved . 16-3
Security level support for batch analysis . 16-4
Interactive mode for remote analysis . 16-4
Default text editor . 16-4
Support for Windows 8 and Windows Server 2012 16-4
Function replacement in Simulink plug-in . 16-4
Check model configuration automatically before analysis 16-5
Data range specification support . 16-5
Polyspace binaries being removed . 16-5

Analysis Results . 16-7

Classification of bugs according to the Common Weakness Enumeration
(CWE) standard . 16-7

Additional coding rules support (MISRA-C:2004 Rule 18.2, MISRA-C++
Rule 5-0-11) . 16-7

Additional analysis checkers . 16-7
Improvement of floating point precision . 16-7

Reviewing Results . 16-8

Results folder appearance in Project Browser . 16-8
Results manager improvements . 16-9
Additional back-to-model support for Simulink plug-in 16-10

R2013b

Analysis Setup . 17-2

xv

Introduction of Polyspace Bug Finder . 17-2
Fast analysis of large code bases . 17-2
Eclipse integration . 17-2

Analysis Results . 17-3

Detection of run-time errors, data flow problems, and other defects in C and
C++ code . 17-3

Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF++, and
custom naming conventions . 17-3

Cyclomatic complexity and other code metrics . 17-3

Reviewing Results . 17-4

Traceability of code analysis results to Simulink models 17-4
Access to Polyspace Code Prover results . 17-4

xvi Contents

R2021a

Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

1

Analysis Setup

Simulink Support: Start Polyspace analysis without an explicit code
generation step
Summary: In R2021a, start the Polyspace analysis of generated code without having to explicitly
generate the code first. To start the Polyspace analysis of code generated from a model, Click Run
Analysis in the Simulink® toolstrip.

If you have Embedded Coder®, Polyspace generates code from the model by using Embedded Coder
when there is no previously generated code corresponding to the model. After the code generation is
complete, the Polyspace analysis starts.

See “Run Polyspace Analysis on Code Generated from Simulink Model”.

Benefits: Previously, you generated code explicitly in a separate step before starting the Polyspace
analysis of the generated code. You are no longer required to perform this step.

Additional Considerations: Before starting a Polyspace analysis, you still need to generate code
explicitly if any of the following is true:

• You do not use Embedded Coder to generate code.
• The model is configured to generate code as a model reference.

Configuration from Build System: Specify options delimiter and
suppress console output
Summary: In R2021a, polyspace-configure has new options to simplify the creation of a
Polyspace project or options file:

• -options-for-sources-delimiter — Use this option to specify an ASCII character that
Polyspace uses as a delimiter between a group of analysis options. You typically use this option in
combination with -options-for-sources, which associates a group of analysis options with
specific source files. You might want to specify a delimiter if, for instance, the default delimiter (;)
is already used inside a macro.

• -no-console-output — Use this option to completely suppress the console output of
polyspace-configure, including error and warning messages. By default, polyspace-
configure emits errors and warnings only.

See also polyspace-configure.

Benefits: The new options allow you to customize the polyspace-configure runs without
extensive additional scripting.

R2021a

1-2

Configuration from Build System: Improved detection of incompatible
software
Summary: In R2021a, if you use software that is not compatible with polyspace-configure when
you trace your build process, polyspace-configure emits a message that identifies the software
and that provides contextual help if applicable. Software that is not compatible with polyspace-
configure includes some antivirus software and certain build systems such as Bazel.

For more information, see polyspace-configure.

Benefits: Previously, when polyspace-configure could not trace your build process because of
incompatible software, the command output did not identify the software. Now, you can easily check
if your build system and environment is compatible with polyspace-configure.

Updated GCC Compiler Support: Set up Polyspace analysis for code
compiled with GCC version 8.x
Summary: In R2021a, Polyspace supports the GCC compiler version 8.x natively. If you build your
source code by using GCC version 8.x, you can specify the compiler name for your Polyspace analysis.

For more information, see Compiler (-compiler).

Benefits: Because of the native support, you can now set up a Polyspace project without knowing the
internal workings of this compiler. The analysis can interpret macros that are implicitly defined by the
compiler and compiler-specific language extensions such as keywords and pragmas.

Updated Microsoft Visual C++ Support: Set up a Polyspace analysis
for code compiled with Visual Studio 2019
Summary: In R2021a, Polyspace supports the compiler Visual Studio® 2019 natively. If you build
your source code by using Visual Studio 2019 (versions 16.x), you can specify the compiler name for
your Polyspace analysis.

For more information, see Compiler (-compiler).

Benefits: Because of the native support, you can now set up a Polyspace project without knowing the
internal workings of this compiler. The analysis can interpret macros that are implicitly defined by the
compiler and compiler-specific language extensions such as keywords and pragmas.

 Analysis Setup

1-3

Modifying Checker Behavior: Modify parameters for MISRA C:2012
rules 1.1 and 5.1 to 5.5
Summary: In R2021a, you can modify the thresholds used in the checkers for MISRA C®: 2012 Rules
1.1 and 5.1 to 5.5.

Rule Description Supported Modification
MISRA C:2012 Rule 1.1 The program shall contain no

violations of the standard C
syntax and constraints, and
shall not exceed the
implementation's translation
limits.

You can increase or decrease
these parameters of the rule
checker:

• Maximum depth of nesting
allowed in control flow
statements

• Maximum levels of inclusion
allowed using include files

• Maximum number of
constants allowed in an
enumeration

• Maximum number of macros
allowed in a translation unit

• Maximum number of
members allowed in a
structure

• Maximum levels of nesting
allowed in a structure

MISRA C:2012 Rule 5.1

MISRA C:2012 Rule 5.2

MISRA C:2012 Rule 5.3

MISRA C:2012 Rule 5.4

MISRA C:2012 Rule 5.5

These rules require uniqueness
of certain types of identifiers.
For instance, rule 5.1 requires
that external identifiers be
distinct.

If the difference between two
identifiers occurs beyond the
first num characters, the rule
checker considers the identifiers
as identical. You can modify the
parameter num separately for
external and internal identifiers.

For more information, see:

• “Modify Default Behavior of Bug Finder Checkers”
• -code-behavior-specifications

Benefits: You can adapt the checkers for MISRA C: 2012 Rules 1.1 and 5.1 to 5.5 to follow your
compiler specifications.

polyspacesetup Function: Integrate Polyspace with MATLAB in fewer
steps
Summary: In R2021a, you can integrate Polyspace with the current or earlier release of MATLAB® in
fewer steps. When you run the function polyspacesetup at the MATLAB command prompt, the
function looks for a Polyspace installation in the default location. If the installation exists, the function

R2021a

1-4

integrates Polyspace with MATLAB. Specify the installation location explicitly only when you install
Polyspace in a nondefault location.

See Also:

• polyspacesetup
• “Integrate Polyspace with MATLAB and Simulink”

Benefits: Previously, to integrate Polyspace with Simulink, you provided the location of the Polyspace
installation folder. Starting in R2021a, providing the installation location is no longer required if you
install Polyspace in the default location.

pslinkrunCrossRelease Function: Analyze code generated in an earlier
release of Simulink by using a later release of Polyspace
Summary: In R2021a, you can run a Polyspace analysis of generated code from an earlier release of
Simulink by using the function pslinkrunCrossRelease. To use this cross-release workflow, your
Polyspace version must be later than your Simulink version and your Simulink must be R2020b or
later.

See :

• pslinkrunCrossRelease
• “Run Polyspace on Code Generated by Using Previous Releases of Simulink”

Benefits: Previously, you used the function pslinkrun in both cross-release and same release
workflows. Starting in R2021a, these two workflows are differentiated by introducing the function
pslinkrunCrossRelease explicitly for the cross-release workflow.

The compatibility of Polyspace with prior releases of Simulink is also simplified. Previously, the
compatibility of Polyspace with an earlier Simulink depended on the specific version of Polyspace and
Simulink. Starting in R2021a, you can integrate Polyspace with Simulink only if your Polyspace
version is later than your Simulink version, and you have Simulink from R2020b or later. See
“Polyspace Support of MATLAB and Simulink from Different Releases”.

Compatibility Considerations
The function pslinkrun no longer supports a cross-release workflow. Use the function
pslinkrunCrossRelease instead.

Functionality being removed: Compilation assistant
The Polyspace compilation assistant will be removed in a future release.

Compatibility Considerations
If you use the compilation assistant in your Polyspace project, clear the corresponding option. To
clear this option in the desktop interface, go to Tools > Preferences and then select the Project
and Results Folder tab.

Instead, when you set up your Polyspace project, you can:

 Analysis Setup

1-5

• Use the Compiler (-compiler) option to specify a compiler that Polyspace supports natively if
you compile your code by using that compiler.

• Use polyspace-configure to trace your build command and to obtain your compiler
configuration. See polyspace-configure.

Changes in analysis options and binaries
-code-behavior-specifications takes only one file as argument
Behavior change

Starting in R2021a, this option only takes one XML file as argument. If you were specifying code
behaviors in multiple XML files, combine their content into one file and provide this file as argument
to the option.

See also -code-behavior-specifications.

-sources-encoding with value other than auto disables automatic detection of encoding
Behavior change

Starting in R2021a, if you explicitly specify a value with the option -sources-encoding (or use the
default value system which uses the default encoding of your OS), the analysis does not perform any
automatic detection of source file encoding. For instance, if you use -sources-encoding shift-
jis, the analysis internally converts your source files from Shift JIS (Shift Japanese Industrial
Standards) to UTF-8 encoding before processing them. If you see regressions from previous releases,
consider using -sources-encoding auto to reenable the automatic detection of source encoding.
Automatic detection is useful when your project contains, for instance, a mix of different encodings.

See also Source code encoding (-sources-encoding).

R2021a

1-6

Analysis Results

AUTOSAR C++14 Support: Check for 327 AUTOSAR C++14 rules
including 19 new rules in R2021a
Summary: In R2021a, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A2-7-3 All declarations of "user-

defined" types, static and non-
static data members, functions
and methods shall be preceded
by documentation.

AUTOSAR C++14 Rule
A2-7-3

A2-8-1 A header file name should
reflect the logical entity for
which it provides declarations.

AUTOSAR C++14 Rule
A2-8-1

A2-8-2 An implementation file name
should reflect the logical entity
for which it provides definitions.

AUTOSAR C++14 Rule
A2-8-2

A8-4-5 "consume" parameters declared
as X && shall always be moved
from.

AUTOSAR C++14 Rule
A8-4-5

A8-4-6 "forward" parameters declared
as T && shall always be
forwarded.

AUTOSAR C++14 Rule
A8-4-6

A8-4-8 Output parameters shall not be
used.

AUTOSAR C++14 Rule
A8-4-8

A8-4-9 "in-out" parameters declared as
T & shall be modified.

AUTOSAR C++14 Rule
A8-4-9

A8-4-10 A parameter shall be passed by
reference if it can't be NULL.

AUTOSAR C++14 Rule
A8-4-10

A8-5-4 If a class has a user-declared
constructor that takes a
parameter of type
std::initializer_list, then it shall
be the only constructor apart
from special member function
constructors.

AUTOSAR C++14 Rule
A8-5-4

A12-8-1 Move and copy constructors
shall move and respectively
copy base classes and data
members of a class, without any
side effects.

AUTOSAR C++14 Rule
A12-8-1

 Analysis Results

1-7

AUTOSAR C++14 Rule Description Polyspace Checker
A12-8-2 User-defined copy and move

assignment operators should
use user-defined no-throw swap
function.

AUTOSAR C++14 Rule
A12-8-2

A12-8-3 Moved-from object shall not be
read-accessed.

AUTOSAR C++14 Rule
A12-8-3

A13-5-3 User-defined conversion
operators should not be used.

AUTOSAR C++14 Rule
A13-5-3

A13-6-1 Digit sequences separators '
shall only be used as follows: (1)
for decimal, every 3 digits, (2)
for hexadecimal, every 2 digits,
(3) for binary, every 4 digits.

AUTOSAR C++14 Rule
A13-6-1

A15-4-1 Dynamic exception-specification
shall not be used.

AUTOSAR C++14 Rule
A15-4-1

A15-4-4 A declaration of non-throwing
function shall contain noexcept
specification.

AUTOSAR C++14 Rule
A15-4-4

A20-8-1 An already-owned pointer value
shall not be stored in an
unrelated smart pointer.

AUTOSAR C++14 Rule
A20-8-1

A27-0-4 C-style strings shall not be used. AUTOSAR C++14 Rule
A27-0-4

M5-0-16 A pointer operand and any
pointer resulting from pointer
arithmetic using that operand
shall both address elements of
the same array.

AUTOSAR C++14 Rule
M5-0-16

See also “AUTOSAR C++14 Rules”.

CERT C++ Support: Check for memory management and programming
rule violations.
Summary: In R2021a, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
OOP50-CPP Do not invoke virtual functions

from constructors or destructors
CERT C++: OOP50-CPP

EXP63-CPP Do not rely on the value of a
moved-from object

CERT C++: EXP63-CPP

MEM56-CPP Do not store an already-owned
pointer value in an unrelated
smart pointer

CERT C++: MEM56-CPP

R2021a

1-8

See also “CERT C++ Rules”.

MISRA C++:2008 Support: Check for disallowed pointer arithmetic
Summary: In R2021a, you can look for violation of this MISRA C++:2008 rule in addition to
previously supported rules.

Rule Description Polyspace Checker
MISRA C++:2008 Rule 5-0-16 A pointer operand and any

pointer resulting from pointer
arithmetic using that operand
shall both address elements of
the same array.

MISRA C++:2008 Rule
5-0-16

See also “MISRA C++:2008 Rules”.

MISRA C:2012 Support: Checkers updated to account for MISRA
C:2012 Technical Corrigendum 1 and Amendment 2
Summary: In R2021a, Polyspace supports amendments to MISRA C:2012 rules in Technical
Corrigendum 1 and Amendment 2.

MISRA C:2012 Technical Corrigendum 1

MISRA C:2012 Technical Corrigendum 1 adds clarifications to existing rules. The clarifications have
led to changes in these checkers:

Rule Description Update in Technical
Corrigendum 1

MISRA C:2012 Rule 10.1 Operands shall not be of an
inappropriate essential type.

The rule now explicitly forbids
use of pointer types with logical
operands such as &&, || and !.

MISRA C:2012 Rule 10.5 The value of an expression
should not be cast to an
inappropriate essential type.

The rule now forbids casts of
integer constants with value 0
or 1 to essentially enum types.

MISRA C:2012 Rule 11.2 Conversions shall not be
performed between a pointer to
an incomplete type and any
other type.

The rule now takes into account
only the unqualified types that
the pointers point to. For
instance, if a pointer is assigned
to another and the only
difference between the pointed
types is a const qualifier, the
rule does not consider this
assignment as a conversion.

 Analysis Results

1-9

Rule Description Update in Technical
Corrigendum 1

MISRA C:2012 Rule 11.4 A conversion should not be
performed between a pointer to
object and an integer type.

The rule now applies explicitly
to pointers to objects only.
Conversions between an integer
type and other pointer types
such as void* or pointers to
functions are flagged by other
rules.

MISRA C:2012 Rule 11.9 The macro NULL shall be the
only permitted form of integer
null pointer constant.

The rule allows the use of {0}
to initialize aggregates or
unions containing pointers.

MISRA C:2012 Rule 14.2 A for loop shall be well-formed. The rule allows any form of
initialization of the loop counter
as long as the initialization does
not have other side effects.

MISRA C:2012 Amendment 2

MISRA C:2012 Amendment 2 addresses the new language features in the C11 standard. All updates
in Amendment 2 have been incorporated in the checkers.

Rule Description Update in Amendment 2
MISRA C:2012 Rule 1.4 Emergent language features

shall not be used.
This rule is new in Amendment
2.

MISRA C:2012 Rule 12.1 The precedence of operators
within expressions should be
made explicit.

The rule now mandates a
violation if the operand of the
_Alignof operator is not
enclosed in parenthesis.

MISRA C:2012 Rule 21.3 The memory allocation and
deallocation functions of
<stdlib.h> shall not be used.

The rule now flags uses of the
aligned_alloc function.

MISRA C:2012 Rule 21.8 The Standard Library
termination functions of
<stdlib.h> shall not be used.

The rule no longer flags
system.

In addition to exit and abort,
the rule now flags _Exit and
quick_exit.

MISRA C:2012 Rule 21.21 The Standard Library function
system of <stdlib.h> shall
not be used.

This rule is new in Amendment
2.

MISRA C:2012 Rule 22.1 All resources obtained
dynamically by means of
Standard Library functions shall
be explicitly released.

The rule now flags memory
allocation using the
aligned_alloc function if the
memory is not released.

R2021a

1-10

Guidelines: New checkers for software complexity defects
Summary: In R2021a, Polyspace has a new category of checkers called Guidelines. This category
contains the Software Complexity checkers. Reduce the software complexity metrics of your code
by activating these new checkers. See “Reduce Software Complexity by Using Polyspace Checkers”.
The Software Complexity checkers include:

Defect Description
Number of Calling Functions Exceeds
Threshold

The number of distinct callers of a function is
greater than the defined threshold.

Number of Called Functions Exceeds
Threshold

The number of distinct function calls within the
body of a function is greater than the defined
threshold.

Comment density below threshold The comment density of the module falls below
the specified threshold.

Call Tree Complexity Exceeds Threshold The call tree complexity of a file is greater than
the defined threshold.

Number of Lines Within body Exceeds
Threshold

The number of lines in the body of a function is
greater than the defined threshold.

Number of Executable Lines Exceeds
Threshold

The number of executable lines in the body of a
function is greater than the defined threshold.

Number of Call Levels Exceeds
Threshold

The nesting depth of control structures in a
function is greater than the defined nesting depth
threshold of a function.

Number of GOTO Statements Exceeds
Threshold

The number of goto statements in a function is
greater than the defined threshold.

Number of Local Static variables
Exceeds Threshold

The number of local static variables in a function
is greater than the defined threshold.

Number of Local Nonstatic Variables
Exceeds Threshold

The number of function calls in a function is
greater than the defined call occurrence
threshold of a function.

Number of Call Occurrences Exceeds
Threshold

The number of function calls in a function is
greater than the defined call occurrence
threshold of a function.

Number of Function Parameters Exceeds
Threshold

The number of arguments of a function is greater
than the defined threshold.

Number of Paths Exceeds Threshold The number of static paths in a function is
greater than the defined threshold.

Number of Return Statements Exceeds
Threshold

The number of return statements in a function
is greater than the defined threshold.

Number of Instructions Exceeds
Threshold

The number of instructions in a function is
greater than the defined threshold.

Number of Lines Exceeds Threshold The number of total lines in a file is greater than
the defined threshold.

 Analysis Results

1-11

Defect Description
Cyclomatic Complexity Exceeds
Threshold

The cyclomatic complexity of a function is greater
than the defined cyclomatic complexity threshold
of a function.

Language Scope Exceeds Threshold The language scope of a function is greater than
the defined threshold.

In the Polyspace user interface, activate these checkers in the Coding Standard & Code Metric
node of the Configuration pane. Alternatively, in the Checkers selection window, select the
Guidelines > Software Complexity checkers.

To activate these checkers in the command-line, use the analysis option Check Guidelines (-
guidelines). To specify a subset of these checkers with modified thresholds by using a checkers
selection file, use Set checkers by file (-checkers-selection-file).

Compatibility Considerations
Each of these software complexity checkers corresponds to a code metric. When you import
comments from a previous run by using the command polyspace-comments-import, Polyspace
copies any review information on a code metric in the previous result to the corresponding software
complexity checker in the current result. If the current result contains the same code metric, the
review information is also copied to the code metric.

JSF AV C++ Support: Check for cases where pass-by-reference is
preferred to pass-by-pointer
Summary: In R2021a, you can check for this JSF® AV C++ rule in addition to previously supported
rules.

Rule Description
AV Rule 117 Arguments should be passed by reference if

NULL values are not possible.

See also “JSF AV C++ Coding Rules”.

New Bug Finder Checkers: Check for inefficient string operations,
noncompliance with AUTOSAR Standard specifications, and other
issues
Summary: In R2021a, you can check for these new Bug Finder defects in your code.

Defect Description
Const rvalue reference parameter may
cause unnecessary data copies

The const-ness of an rvalue reference prevents
move operation and causes a more expensive
copy operation instead.

R2021a

1-12

Defect Description
Expensive use of std::string methods
instead of more efficient overload

An std::string method uses a single character
string literal, that is, a const char* object of
length one, instead of using a single quoted
character.

Expensive use of std::string with
empty string literal

Use of std::string with empty string literal
can be replaced by less expensive calls to
std::basic_string member functions.

Expensive use of non-member
std::string operator+() instead of a
simple append

The non-member std::string operator+()
function is called when the append (or +=)
method would have been more efficient.

Expensive local variable copy A local variable is created by copy from a const
reference and not modified later.

Expensive logical operation A logical operation requires the evaluation of
both operands because of their order, resulting in
inefficient code.

File does not compile A file has a compilation error.
Noncompliance with AUTOSAR library A call to an AUTOSAR RTE API function violates

AUTOSAR Standard specifications.
Use of new or make_unique instead of
more efficient make_shared

Creating a shared_ptr pointer with new or
make_unique causes an unnecessary additional
memory allocation.

For all defect checkers, see “Defects”.

Changes to coding rules checking
In R2021a, coding rules checking has improved across various standards. For instance, you can check
for both MISRA C:2004 and MISRA C:2012 rules in the same run.

These changes have been made in the checking of previously supported rules.

Rule Description Change
MISRA C:2012 Rule 1.1 An implementation-defined

behavior on which the output of
the program depends shall be
documented and understood.

You can now change the
thresholds used in the rule
checking using the option -
code-behavior-
specifications.

MISRA C:2012 Rule 1.3 There shall be no occurrence of
undefined or critical unspecified
behaviour.

The checker no longer flags all
instances of the offsetof
macro, but only the instances
that cause undefined behavior.
For instance, if the second
argument of offsetof is not a
field of the first argument or is a
bitfield, the checker raises a
violation.

 Analysis Results

1-13

Rule Description Change
MISRA C: 2012 Rule 5.x Rules that ensure uniqueness of

identifiers.
You can now change the
thresholds used in the rule
checking using the option -
code-behavior-
specifications.

MISRA C:2012 Rule 10.3 The value of an expression shall
not be assigned to an object
with a narrower essential type
or of a different essential type
category.

The checker now detects
implicit conversions when a
structure is initialized using
aggregate initialization. For
instance, in this code snippet,
the initialization of structure a
results in an implicit conversion
from the essentially signed type
of x to the essentially unsigned
type of the field a_

typedef struct tag_A
{
 unsigned char a_;
 unsigned char b_;
}tag_A;

int x = 1;
tag_A a = {x,0}; //Noncompliant

MISRA C:2012 Rule 10.4 Both operands of an operator in
which the usual arithmetic
conversions are performed shall
have the same essential type
category.

The checker treats macros such
as TRUE or FALSE that resolve
to 0 or 1 as essentially boolean.

AUTOSAR C++14 Rule
A5-0-3

The declaration of objects shall
contain no more than two levels
of pointer indirection

The checker no longer flags the
use of objects with more than
two levels of pointer indirection.

R2021a

1-14

Rule Description Change
AUTOSAR C++14 Rule
A8-5-2

Braced-initialization {}, without
equals sign, shall be used for
variable initialization.

The checker now adheres more
strictly to the AUTOSAR C++14
specifications. The checker flags
non-uniform initializations such
as:

• Type obj1 = obj2;

• Type obj1(obj2);

Even if obj1 and obj2 have the
same types. Previously, the
checker raised a flag only if the
types were different.

The checker allows an exception
for these cases:

• Initialization of variables
with type auto using a
simple assignment

• Initialization of reference
types

• Declarations with global
scope using the format Type
a() where Type is a class
type with default
constructor. The analysis
interprets a as a function
returning the type Type.

• Loop variable initialization in
OpenMP parallel for loops,
that is, in for loop
statements that immediately
follow #pragma omp
parallel for

AUTOSAR C++14 Rule
A10-1-1

Classes shall not be derived
from more than one base class
which is not an interface class.

The checker now expands
interface classes to include
constructors and destructors set
to =default or =delete.

AUTOSAR C++14 Rule
A12-6-1

All class data members that are
initialized by the constructor
shall be initialized using
member initializers.

The checker no longer flags
constructors that use default
member initialization.

AUTOSAR C++14 Rule
A12-8-7

Assignment operators should be
declared with the ref-qualifier
&.

The checker no longer flags
deleted assignment operators
without the ref-qualifier &.

 Analysis Results

1-15

Rule Description Change
AUTOSAR C++14 Rule
A20-8-5 and AUTOSAR C++14
Rule A20-8-6

std::make_unique
(std::make_shared) shall be
used to construct objects owned
by std::unique_ptr
(std::shared_ptr).

The checkers now also apply to
boost::unique_ptr and
boost::shared_ptr.

AUTOSAR C++14 Rule
M5-0-15

Array indexing shall be the only
form of pointer arithmetic.

The checker no longer flags
arithmetic operations such as
increment and decrement on
iterators that point to elements
in containers.

CERT C: Rule INT31-C Ensure that integer conversions
do not result in lost or
misinterpreted data

The checker now detects
comparisons of time_t
variables with variables of other
types. time_t is an
implementation-defined type,
therefore, these comparisons
can lead to unexpected results.

CERT C: Rec. MEM04-C Beware of zero-length
allocations

The checker now performs more
direct checks for possibilities of
zero-length memory allocations
and adheres more strictly to the
CERT C standard.

CERT C++: DCL53-CPP Do not write syntactically
ambiguous declarations.

The checker no longer flags
ambiguous declarations with
global scope. For instance, the
analysis does not flag
declarations with global scope
using the format Type a()
where Type is a class type with
a default constructor. The
analysis interprets a as a
function returning the type
Type.

CERT C: Rule EXP37-C Call functions with the correct
number and type of arguments

This checker now flags:

• Calls with complex
arguments to math functions
that do not take a complex
input

• Calls to functions whose
provided or deduced
prototypes do not match
their definitions.

CERT C++: EXP37-C Call functions with the correct
number and type of arguments

This checker now flags the calls
to an extern "C" function if its
prototypes does not match the
definition.

R2021a

1-16

Rule Description Change
Checkers from different C++
standards:

• MISRA C++:2008 Rule
3-2-2

• AUTOSAR C++14 Rule
M3-2-2

• CERT C++: DCL60-CPP

Checkers for the one definitions
rule in C++.

Starting in R2021a, in the
declarations that violate these
rules, the violations are flagged
on the keywords instead of the
variable names.

Starting in R2021a, these
checkers are no longer raised
on unused code such as:

• Noninstantiated templates
• Uncalled static or extern

functions
• Uncalled and undefined local

functions
• Unused types and variables

Checkers from different C++
standards:

• MISRA C++:2008 Rule
3-2-1

• AUTOSAR C++14 Rule
M3-2-1

Checkers that flag declaration
of an object with incompatible
types across modules.

Starting in R2021a, Polyspace
considers two types to be
compatible if they have the
same size and signedness in the
environment that you use. For
instance, if you specify -target
as i386, Polyspace considers
long and int to be compatible
types.

Starting in R2021a, these
checkers are no longer raised
on unused code such as:

• Noninstantiated templates
• Uncalled static or extern

functions
• Uncalled and undefined local

functions
• Unused types and variables

 Analysis Results

1-17

Rule Description Change
Checkers from different C++
standards:

• MISRA C++2008:

• MISRA C++:2008 Rule
2-10-5

• MISRA C++:2008 Rule
3-2-4

• AUTOSAR C++14:

• AUTOSAR C++14 Rule
A2-10-4

• AUTOSAR C++14 Rule
A2-10-5

• AUTOSAR C++14 Rule
M3-2-4

Checkers that check for
inconsistent declaration and
definitions, and name re-use
across different modules.

Starting in R2021a, these
checkers are no longer raised
on unused code such as:

• Noninstantiated templates
• Uncalled static or extern

functions
• Uncalled and undefined local

functions
• Unused types and variables

JSF AV C++ Rule 137 Starting in R2021a, this checker
is raised on declarations of
nonstatic objects that you use in
only one file. The checker is
raised even if you analyze a
singe file. The checker is not
raised on the declarations of
objects that remain unused,
such as:

• Noninstantiated templates
• Uncalled static or extern

functions
• Uncalled and undefined local

functions
• Unused types and variables

Compatibility Considerations
If you checked your code for the preceding rules, you might see a change in the number of violations.

Updated Bug Finder defect checkers
In R2021a, these defect checkers have been updated.

R2021a

1-18

Defect Description Update
Ambiguous declaration
syntax

Declaration syntax can be
interpreted as object
declaration or part of function
declaration

The checker no longer flags
ambiguous declarations with
global scope. For instance, the
analysis does not flag
declarations with global scope
using the format Type a()
where Type is a class type with
a default constructor. The
analysis interprets a as a
function returning the type
Type.

Format string specifiers
and arguments mismatch

Format specifiers in printf-like
functions do not match
corresponding arguments

In cases where integer
promotion modifies the
perceived data type of an
argument, the analysis result
shows both the original type and
the type after promotion. The
format specifier has to match
the type after integer
promotion.

 Analysis Results

1-19

Reviewing Results

Simulink Block Annotation: Add multiple Polyspace annotations
corresponding to multiple types of Polyspace results
Summary: In R2021a, you can annotate a Simulink block with multiple annotations for multiple types
of Polyspace results through the Polyspace Annotation window. For instance, consider a block that
is annotated for a MISRA C violation. If this block is then flagged for a defect violation, you can add
an annotation corresponding to the defect violation without overwriting the previous annotation for
the MISRA C violation. To add these two annotations, open the Polyspace Annotation window twice
and each time, annotate for a specific type of result. These annotations are appended to each other
and can be seen in the Result Details pane of Polyspace User Interface. See “Annotate Blocks to
Justify Issues”

Benefits: Previously, if you added a new annotation to an already annotated Simulink block,
Polyspace overwrote the existing annotation. Starting in R2021a, adding an annotation to a
previously annotated Simulink block appends the new annotation to the existing annotation.

R2021a

1-20

R2020b

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

2

Analysis Setup

Compiler Support: Set up Polyspace analysis for code compiled by
Renesas SH C compilers
Summary: If you build your source code by using Renesas® SH C compilers, in R2020b, you can
specify the target name sh, which corresponds to SuperH targets, for your Polyspace analysis.

See also Renesas Compiler (-compiler renesas).

Benefits: You can now set up a Polyspace project without knowing the internal workings of Renesas
SH C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Cygwin Support: Create Polyspace projects automatically by using
Cygwin 3.x build commands
Summary: In R2020b, the polyspace-configure command supports version 3.x of Cygwin™
(versions 3.0, 3.1, and so on).

See also Check if Polyspace Supports Build Scripts.

Benefits: Using the polyspace-configure command, you can trace build scripts that are executed
at a Cygwin 3.x command line and create a Polyspace project with the source files and compilation
options automatically specified.

C++17 Support: Run Polyspace analysis on code that has C++17
features
Summary: In R2020b, Polyspace can interpret the majority of C++17-specific features.

See also:

• C++ standard version (-cpp-version)
• C/C++ Language Standard Used in Polyspace Analysis

R2020b

2-2

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/renesascompilercompilerrenesas.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceconfigurecommand.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/check-if-polyspace-supports-windows-build-command.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/cc-language-standard-used-in-polyspace-analysis.html

• C++17 Language Elements Supported in Polyspace

Benefits: You can now set up a Polyspace analysis for code containing C++17-specific language
elements. Previously, some C++17 specific elements were not recognized and caused compilation
errors. See .

Modifying Checker Behavior: Check for non-initialized buffers when
passed by pointer to certain functions
Summary: In R2020b, you can indicate that pointer arguments to some functions must point to
initialized buffers. By default, the checker Non-initialized variable checks a pointer for an
initialized buffer only when you dereference the pointer. A function call such as:

int var; func(&var);

is not flagged for non-initialization because you might initialize the variable var in func. Starting in
R2020b, you can specify a list of functions whose pointer arguments must be checked for initialized
buffers.

For more information, see:

• -code-behavior-specifications
• Extend Checkers for Initialization to Check Function Arguments Passed by Pointers (Polyspace

Bug Finder Server)

Benefits: Suppose that you consider some function calls as part of the system boundary and you
want to make sure that you pass initialized buffers across the boundary. For instance, the Run-Time
environment or Rte_ functions in AUTOSAR allow a software component to communicate with other
software components. You might want to ensure that pointer arguments to these functions point to
initialized buffers. You can now use Bug Finder to find uninitialized buffers passed through pointers
to these functions.

polyspacePackNGo Function: Generate and package Polyspace option
files from a Simulink model
Summary: In R2020b, you can package Polyspace option files along with code generated from a
Simulink model, and then analyze the code on a different machine in a distributed workflow. After
packaging the generated code, create and archive options files required for a Polyspace analysis by
using the polyspacePackNGo function.

See also:

• polyspacePackNGo
• Run Polyspace Analysis on Generated Code by Using Packaged Options Files (Polyspace Code

Prover) (Simulink) (Polyspace Code Prover Server) (Polyspace Bug Finder Server)

Benefits: In a distributed workflow, a Simulink user generates code from a model and sends the code
to another development environment. In this environment, a Polyspace user analyzes the generated
code by using design ranges and other model-specific information. Previously, in this distributed
workflow, you configured the Polyspace analysis options manually. Starting in R2020b, you do not
have to manually create the option files when analyzing generated code by using Polyspace in a
distributed workflow.

 Analysis Setup

2-3

https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/c17-language-elements-supported-in-polyspace.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/noninitializedvariable.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/codebehaviorspecifications.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/extend-checkers-for-initialization-to-check-arguments-passed-by-reference.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspacepackngo.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/analyze-generated-code-by-using-packaged-options-files.html

Polyspace and MATLAB Integration: Integrate Polyspace with MATLAB
programmatically without user interaction
Summary: In R2020b, use simpler steps to integrate Polyspace and MATLAB. Instead of browsing to
a specific subfolder of the Polyspace installation folder, and then running the polyspacesetup
function, run polyspacesetup from any folder:

polyspacesetup('install', 'polyspaceFolder', folder);

folder is the location of the Polyspace installation in your machine. To integrate Polyspace with
MATLAB without user interaction, use:

polyspacesetup('install', 'polyspaceFolder', folder, 'silent', true);

See:

• polyspacesetup
• Integrate Polyspace with MATLAB and Simulink (Polyspace Code Prover)

Benefits: Previously, integrating Polyspace with MATLAB required user interaction. Starting in
R2020b, you can perform the integration programmatically and silently.

polyspace.ModelLinkOptions Object: Configure object to analyze code
generated as a model reference
Summary: In R2020b, you can configure a polyspace.ModelLinkOptions object to analyze code
generated as a model reference by using the new optional argument asModelRef. To run a Polyspace
analysis on the code generated as a model reference, create a polyspace.ModelLinkOptions
object and set the asModelRef flag to true. See also:

• polyspace.ModelLinkOptions
• Analyze Code Generated as Model Reference (Polyspace Code Prover)

Benefits: Previously, the class polyspace.ModelLinkOptions did not support analyzing code
generated as model reference. Starting in R2020b, you can run a Polyspace analysis on code
generated as a model reference by using the class polyspace.ModelLinkOptions. You can also set
the options for the Polyspace analysis by using a pslinkoptions object.

Configuration from Build System: Generate a project file or analysis
options file by using a JSON compilation database
Summary: In R2020b, if your build system supports the generation of a JSON compilation database,
you can create a Polyspace project file or an analysis options file from your build system without
tracing your build process. After you generate the JSON compilation database file, pass this file to
polyspace-configure by using the option -compilation-database to extract your build
information.

For more information on compilation databases, see JSON Compilation Database.

Benefits: Previously, you had to invoke your build command and trace your build process to extract
the build information. For some build systems such as Bazel, polyspace-configure could not

R2020b

2-4

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspacesetup.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspace.modellinkoptions-class.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspace.modellinkoptions-class.html#mw_5fa690a7-41ee-44cd-9846-a15b756882df
https://clang.llvm.org/docs/JSONCompilationDatabase.html

always trace the build process, resulting in errors when running an analysis by using the generated
options file.

Configuration from Build System: Specify how Polyspace imports
compiler macro definitions
Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, you can specify how Polyspace imports the
compiler macro definitions.

Use option -import-macro-definitions and specify:

• none — Skip the import of macro definition. You can provide macro definitions manually instead.
• from-whitelist — Use a Polyspace white list to query your compiler for macro definitions.
• from-source-token — Use all non-keyword tokens in your source files to query your compiler

for macro definitions.

See also polyspace-configure.

Benefits: Previously, Polyspace used all non-keyword tokens in your source files to query your
compiler for macro definitions each time that you traced your build command. You now have greater
control on the import of macro definitions.

Configuration from Build System: Compiler configuration cached from
prior runs for improved performance
Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, Polyspace caches your compiler
configuration. If your compiler configuration does not change, Polyspace reuses the cached
configuration during subsequent runs of polyspace-configure.

See also polyspace-configure.

Benefits: Previously, Polyspace did not cache your compiler configuration. Instead, during every run
of polyspace-configure, Polyspace queried your compiler for the size of fundamental types,
compiler macro definitions, and other compiler configuration information. Starting R2020b, the
caching improves the later polyspace-configure runs.

Changes in analysis options and binaries
XML syntax with option -code-behavior-specifications changed
Warns

The option -code-behavior-specifications takes an XML file as argument. You can use this
XML file to specify whether a certain function must be subjected to special checks. For instance, you
can specify that a function must not be used altogether.

In R2020b, the XML syntax changed slightly. To associate the behavior FORBIDDEN_FUNC with a
function funcName, instead of the syntax:

<function name="funcName" behavior="FORBIDDEN_FUNC">

 Analysis Setup

2-5

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceconfigurecommand.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceconfigurecommand.html

Use the syntax:

<function name="funcName">
 <behavior name="FORBIDDEN_FUNC">
</function>

See also -code-behavior-specifications.

R2020b

2-6

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/codebehaviorspecifications.html

Analysis Results

AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules
including 61 new rules in R2020b
Summary: In R2020b, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-1 A project shall not contain

instances of non-volatile
variables being given values
that are not subsequently used.

AUTOSAR C++14 Rule
A0-1-1

A0-1-3 Every function defined in an
anonymous namespace, or static
function with internal linkage,
or private member function
shall be used.

AUTOSAR C++14 Rule
A0-1-3

A2-7-2 Sections of code shall not be
"commented out".

AUTOSAR C++14 Rule
A2-7-2

A2-10-4 The identifier name of a non-
member object with static
storage duration or static
function shall not be reused
within a namespace.

AUTOSAR C++14 Rule
A2-10-4

A2-10-5 An identifier name of a function
with static storage duration or a
non-member object with
external or internal linkage
should not be reused.

AUTOSAR C++14 Rule
A2-10-5

A3-1-5 A function definition shall only
be placed in a class definition if
(1) the function is intended to
be inlined (2) it is a member
function template (3) it is a
member function of a class
template.

AUTOSAR C++14 Rule
A3-1-5

A3-1-6 Trivial accessor and mutator
functions should be inlined.

AUTOSAR C++14 Rule
A3-1-6

A3-8-1 An object shall not be accessed
outside of its lifetime.

AUTOSAR C++14 Rule
A3-8-1

A5-1-6 Return type of a non-void return
type lambda expression should
be explicitly specified.

AUTOSAR C++14 Rule
A5-1-6

 Analysis Results

2-7

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea011.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea011.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea013.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea013.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2104.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2104.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2105.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2105.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea315.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea315.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea316.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea316.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea381.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea381.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea516.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea516.html

AUTOSAR C++14 Rule Description Polyspace Checker
A5-1-8 Lambda expressions should not

be defined inside another
lambda expression.

AUTOSAR C++14 Rule
A5-1-8

A5-1-9 Identical unnamed lambda
expressions shall be replaced
with a named function or a
named lambda expression.

AUTOSAR C++14 Rule
A5-1-9

A5-2-1 dynamic_cast should not be
used.

AUTOSAR C++14 Rule
A5-2-1

A5-3-1 Evaluation of the operand to the
typeid operator shall not contain
side effects.

AUTOSAR C++14 Rule
A5-3-1

A5-3-2 Null pointers shall not be
dereferenced.

AUTOSAR C++14 Rule
A5-3-2

A5-10-1 A pointer to member virtual
function shall only be tested for
equality with null-pointer-
constant.

AUTOSAR C++14 Rule
A5-10-1

A6-2-1 Move and copy assignment
operators shall either move or
respectively copy base classes
and data members of a class,
without any side effects.

AUTOSAR C++14 Rule
A6-2-1

A6-2-2 Expression statements shall not
be explicit calls to constructors
of temporary objects only.

AUTOSAR C++14 Rule
A6-2-2

A6-5-3 Do statements should not be
used.

AUTOSAR C++14 Rule
A6-5-3

A7-1-1 Constexpr or const specifiers
shall be used for immutable
data declaration.

AUTOSAR C++14 Rule
A7-1-1

A7-1-2 The constexpr specifier shall be
used for values that can be
determined at compile time.

AUTOSAR C++14 Rule
A7-1-2

A7-1-5 The auto specifier shall not be
used apart from following cases:
(1) to declare that a variable has
the same type as return type of
a function call, (2) to declare
that a variable has the same
type as initializer of non-
fundamental type, (3) to declare
parameters of a generic lambda
expression, (4) to declare a
function template using trailing
return type syntax.

AUTOSAR C++14 Rule
A7-1-5

R2020b

2-8

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea518.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea518.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea519.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea519.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea532.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea532.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea5101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea5101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea621.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea621.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea622.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea622.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea653.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea653.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea711.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea711.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea712.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea712.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea715.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea715.html

AUTOSAR C++14 Rule Description Polyspace Checker
A7-6-1 Functions declared with the

[[noreturn]] attribute shall not
return.

AUTOSAR C++14 Rule
A7-6-1

A8-4-4 Multiple output values from a
function should be returned as a
struct or tuple.

AUTOSAR C++14 Rule
A8-4-4

A8-4-14 Interfaces shall be precisely and
strongly typed.

AUTOSAR C++14 Rule
A8-4-14

A11-0-1 A non-POD type should be
defined as class.

AUTOSAR C++14 Rule
A11-0-1

A12-0-2 Bitwise operations and
operations that assume data
representation in memory shall
not be performed on objects.

AUTOSAR C++14 Rule
A12-0-2

A12-1-2 Both NSDMI and a non-static
member initializer in a
constructor shall not be used in
the same type.

AUTOSAR C++14 Rule
A12-1-2

A12-1-6 Derived classes that do not need
further explicit initialization and
require all the constructors
from the base class shall use
inheriting constructors.

AUTOSAR C++14 Rule
A12-1-6

A12-4-2 If a public destructor of a class
is non-virtual, then the class
should be declared final.

AUTOSAR C++14 Rule
A12-4-2

A12-8-4 Move constructor shall not
initialize its class members and
base classes using copy
semantics.

AUTOSAR C++14 Rule
A12-8-4

A12-8-7 Assignment operators should be
declared with the ref-qualifier
&.

AUTOSAR C++14 Rule
A12-8-7

A13-5-5 Comparison operators shall be
non-member functions with
identical parameter types and
noexcept.

AUTOSAR C++14 Rule
A13-5-5

A14-5-2 Class members that are not
dependent on template class
parameters should be defined in
a separate base class.

AUTOSAR C++14 Rule
A14-5-2

 Analysis Results

2-9

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea761.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea761.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea844.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea844.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea8414.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea8414.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1202.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1202.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1212.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1212.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1216.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1216.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1242.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1242.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1284.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1284.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1287.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1287.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1355.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1355.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1452.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1452.html

AUTOSAR C++14 Rule Description Polyspace Checker
A14-5-3 A non-member generic operator

shall only be declared in a
namespace that does not
contain class (struct) type, enum
type or union type declarations.

AUTOSAR C++14 Rule
A14-5-3

A15-1-1 Only instances of types derived
from std::exception should be
thrown.

AUTOSAR C++14 Rule
A15-1-1

A15-1-3 All thrown exceptions should be
unique.

AUTOSAR C++14 Rule
A15-1-3

A15-2-1 Constructors that are not
noexcept shall not be invoked
before program startup.

AUTOSAR C++14 Rule
A15-2-1

A15-3-3 Main function and a task main
function shall catch at least:
base class exceptions from all
third-party libraries used,
std::exception and all otherwise
unhandled exceptions.

AUTOSAR C++14 Rule
A15-3-3

A15-3-4 Catch-all (ellipsis and
std::exception) handlers shall be
used only in (a) main, (b) task
main functions, (c) in functions
that are supposed to isolate
independent components and
(d) when calling third-party
code that uses exceptions not
according to AUTOSAR C++14
guidelines.

AUTOSAR C++14 Rule
A15-3-4

A15-4-2 If a function is declared to be
noexcept, noexcept(true) or
noexcept(<true condition>),
then it shall not exit with an
exception.

AUTOSAR C++14 Rule
A15-4-2

A15-4-3 Function's noexcept
specification shall be either
identical or more restrictive
across all translation units and
all overriders.

AUTOSAR C++14 Rule
A15-4-3

R2020b

2-10

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1453.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1453.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1513.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1513.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1533.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1533.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1542.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1542.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1543.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1543.html

AUTOSAR C++14 Rule Description Polyspace Checker
A15-5-1 All user-provided class

destructors, deallocation
functions, move constructors,
move assignment operators and
swap functions shall not exit
with an exception. A noexcept
exception specification shall be
added to these functions as
appropriate.

AUTOSAR C++14 Rule
A15-5-1

A18-5-9 Custom implementations of
dynamic memory allocation and
deallocation functions shall
meet the semantic requirements
specified in the corresponding
"Required behaviour" clause
from the C++ Standard.

AUTOSAR C++14 Rule
A18-5-9

A18-5-10 Placement new shall be used
only with properly aligned
pointers to sufficient storage
capacity.

AUTOSAR C++14 Rule
A18-5-10

A18-5-11 "operator new" and "operator
delete" shall be defined
together.

AUTOSAR C++14 Rule
A18-5-11

A18-9-2 Forwarding values to other
functions shall be done via: (1)
std::move if the value is an
rvalue reference, (2)
std::forward if the value is
forwarding reference.

AUTOSAR C++14 Rule
A18-9-2

A18-9-4 An argument to std::forward
shall not be subsequently used.

AUTOSAR C++14 Rule
A18-9-4

A20-8-2 A std::unique_ptr shall be used
to represent exclusive
ownership.

AUTOSAR C++14 Rule
A20-8-2

A20-8-3 A std::shared_ptr shall be used
to represent shared ownership.

AUTOSAR C++14 Rule
A20-8-3

A20-8-5 std::make_unique shall be used
to construct objects owned by
std::unique_ptr.

AUTOSAR C++14 Rule
A20-8-5

A20-8-6 std::make_shared shall be used
to construct objects owned by
std::shared_ptr.

AUTOSAR C++14 Rule
A20-8-6

A26-5-2 Random number engines shall
not be default-initialized.

AUTOSAR C++14 Rule
A26-5-2

 Analysis Results

2-11

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1551.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1551.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1859.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1859.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18510.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18510.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1892.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1892.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1894.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1894.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2082.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2082.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2083.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2083.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2085.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2085.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2086.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2086.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2652.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2652.html

AUTOSAR C++14 Rule Description Polyspace Checker
A27-0-2 A C-style string shall guarantee

sufficient space for data and the
null terminator.

AUTOSAR C++14 Rule
A27-0-2

A27-0-3 Alternate input and output
operations on a file stream shall
not be used without an
intervening flush or positioning
call.

AUTOSAR C++14 Rule
A27-0-3

M0-1-4 A project shall not contain non-
volatile POD variables having
only one use.

AUTOSAR C++14 Rule
M0-1-4

M0-3-2 If a function generates error
information, then that error
information shall be tested.

AUTOSAR C++14 Rule
M0-3-2

M7-5-2 The address of an object with
automatic storage shall not be
assigned to another object that
may persist after the first object
has ceased to exist.

AUTOSAR C++14 Rule
M7-5-2

M9-6-4 Named bit-fields with signed
integer type shall have a length
of more than one bit.

AUTOSAR C++14 Rule
M9-6-4

M15-1-1 The assignment-expression of a
throw statement shall not itself
cause an exception to be
thrown.

AUTOSAR C++14 Rule
M15-1-1

M15-3-1 Exceptions shall be raised only
after start-up and before
termination.

AUTOSAR C++14 Rule
M15-3-1

M15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point.

AUTOSAR C++14 Rule
M15-3-4

See also AUTOSAR C++14 Rules.

CERT C Support: Check for missing const-qualification and use of
hardcoded numbers
Summary: In R2020b, you can look for violations of these CERT C recommendations in addition to
previously supported rules.

CERT C Rule Description Polyspace Checker
DCL00-C Const-qualify immutable objects CERT C: Rec. DCL00-C

See also CERT C Rules and Recommendations.

R2020b

2-12

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2702.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2702.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2703.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2703.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem752.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem752.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem964.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem964.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/autosar-c-14.html
https://wiki.sei.cmu.edu/confluence/x/T9cxBQ
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/ref/certcrec.dcl00c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/cert-c-rules-and-recommendations.html

CERT C++ Support: Check for exception handling issues, memory
management problems, and other rule violations
Summary: In R2020b, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
ERR58-CPP Handle all exceptions thrown

before main() begins executing
CERT C++: ERR58-CPP

MEM54-CPP Provide placement new with
properly aligned pointers to
sufficient storage capacity

CERT C++: MEM54-CPP

MEM55-CPP Honor replacement dynamic
storage management
requirements

CERT C++: MEM55-CPP

MSC53-CPP Do not return from a function
declared [[noreturn]]

CERT C++: MSC53-CPP

ERR55-CPP Honor exception specifications CERT C++: ERR55-CPP

See also CERT C++ Rules.

MISRA C++:2008 Support: Check for commented out code, variables
used once, exception handling issues, and other rule violations
Summary: In R2020b, you can look for violations of these MISRA C++:2008 rules in addition to
previously supported rules.

MISRA C++:2008 Rule Description Polyspace Checker
0-1-4 A project shall not contain non-

volatile POD variables having
only one use.

MISRA C++:2008 Rule
0-1-4

0-3-2 If a function generates error
information, then that error
information shall be tested.

MISRA C++:2008 Rule
0-3-2

2-7-2 Sections of code should not be
"commented out" using C-style
comments.

MISRA C++:2008 Rule
2-7-2

2-7-3 Sections of code should not be
"commented out" using C++-
style comments.

MISRA C++:2008 Rule
2-7-3

14-5-1 A non-member generic function
shall only be declared in a
namespace that is not an
associated namespace.

MISRA C++:2008 Rule
14-5-1

 Analysis Results

2-13

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR58-CPP.+Handle+all+exceptions+thrown+before+main%28%29+begins+executing
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcerr58cpp.html
https://wiki.sei.cmu.edu/confluence/x/a3s-BQ
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem54cpp.html
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem55cpp.html
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmsc53cpp.html
https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR55-CPP.+Honor+exception+specifications
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcerr55cpp.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/cert-c-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule273.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule273.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1451.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1451.html

MISRA C++:2008 Rule Description Polyspace Checker
15-1-1 The assignment-expression of a

throw statement shall not itself
cause an exception to be
thrown.

MISRA C++:2008 Rule
15-1-1

15-3-1 Exceptions shall be raised only
after start-up and before
termination of the program.

MISRA C++:2008 Rule
15-3-1

15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point.

MISRA C++:2008 Rule
15-3-4

See also MISRA C++:2008 Rules.

JSF AV C++ Support: Check for commented out code and methods that
can be inlined
Summary: In R2020b, you can check for these JSF AV C++ rules in addition to previously supported
rules.

Rule Description
122 Trivial accessor and mutator functions should be

inlined.
127 Code that is not used (commented out) shall be

deleted.

See also JSF AV C++ Coding Rules.

MISRA C Support: Check for commented out code
Summary: In R2020b, you can look for violations of these MISRA C rules and directives in addition
to previously supported rules and directives.

MISRA C Rule Description Polyspace Checker
MISRA C:2004 Rule 2.4 Sections of code should not be

"commented out".
MISRA C:2004 Rule 2.4

See also MISRA C :2004 and
MISRA AC AGC Coding Rules.

MISRA C:2012 Dir 4.4 Sections of code should not be
"commented out".

MISRA C:2012 Dir 4.4

See also MISRA C :2012 Directives and Rules.

R2020b

2-14

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/misra-c2008-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/supported-.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2012dir4.4.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/misra-c-2012-reference.html

New Bug Finder Defect Checkers: Check for post-C++11 defects such
as problematic move operations, missing constexpr, and noexcept
violations
Summary: In R2020b, you can check for these new types of defects.

Defect Description
A move operation may throw Throwing move operations might result in STL

containers using the corresponding copy
operations

Const std::move input may cause a more
expensive object copy

Const std::move input cannot be moved and
results in more expensive copy operation

Data race on adjacent bit fields Multiple threads perform unprotected operations
on adjacent bit fields of a shared data structure

Expensive std::string::c_str() use in
a std::string operation

An std::string operation uses the output of an
std::string::c_str method, resulting in
inefficient code

Expensive constant std::string
construction

A const string object is constructed from
constant data resulting in inefficient code

Expensive copy in a range-based for
loop iteration

The loop variable of a range-based for loop is
copied from the range elements instead of being
referenced resulting in inefficient code

Expensive pass by value Functions pass large parameters by value instead
of by reference

Expensive return by value Functions return large output by value instead of
by reference

Incorrect value forwarding Forwarded object might be modified
unexpectedly

Missing constexpr specifier constexpr specifier can be used on expression
for compile-time evaluation

Noexcept function exits with exception Functions specified as noexcept,
noexcept(true) or noexcept(<true
condition>) exit with an exception, which
causes abnormal termination of program
execution, leading to resource leak and security
vulnerability

std::move called on an unmovable type Result of std::move is not movable
Throw argument raises unexpected
exception

The argument expression in a throw statement
raises unexpected exceptions, leading to resource
leaks and security vulnerabilities

See the full list of defect checkers in Defects.

Changes to coding rules checking
Summary: In R2020b, coding rules checking has improved across various coding standards:

 Analysis Results

2-15

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/amoveoperationmaythrow.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/conststd-moveinputmaycauseamoreexpensiveobjectcopy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/conststd-moveinputmaycauseamoreexpensiveobjectcopy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/dataraceonadjacentbitfields.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivec_strtostd-stringoperation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivec_strtostd-stringoperation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensiveconstantstd-stringconstruction.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensiveconstantstd-stringconstruction.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivecopyinarangebasedforloopiteration.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivecopyinarangebasedforloopiteration.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivepassbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivereturnbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/incorrectvalueforwarding.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/missingconstexprspecifier.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/noexceptfunctionexitswithexception.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/std-movecalledonanunmovabletype.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/throwargumentraisesunexpectedexception.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/throwargumentraisesunexpectedexception.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/defect-reference.html

• The Polyspace checkers for AUTOSAR C++14 now follow AUTOSAR C++14 release 18-10
(October 2018).

• You can check for MISRA® C++ and JSF AV C++ rules in the same run. If the issues that you want
to detect span MISRA C++ and JSF AV C++, you can enable rules from both standards and detect
issues in a single run.

In addition, these changes have been made in the checking of previously supported rules.

Rule Description Change
MISRA C:2012 Dir 4.14 The validity of values received

from external sources shall be
checked.

The checker now use a broader
definition of valid data. The
following are no longer
considered as invalid data:

• Inputs to functions that do
not have a visible caller

• Return values of undefined
(stubbed) functions

• Global variables external to
the unit

See Sources of Tainting in a
Polyspace Analysis. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

MISRA C:2012 Rule 1.1 The program shall contain no
violations of the standard C
syntax and constraints, and
shall not exceed the
implementation’s translation
limits.

The checker takes into account
header files irrespective of
whether you suppress headers
using the option Do not
generate results for (-
do-not-generate-results-
for).

For instance, the checker raises
a violation if the number of
macros in C99 code exceeds
4095. The checker now counts
macros in header files
irrespective of whether you
choose to suppress results in
headers. The reason is that the
header files are included in a
translation unit and the
translation unit as a whole is
subject to MISRA C: 2012 Rule
1.1. Previously, the headers
were taken into account only if
unsuppressed.

R2020b

2-16

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2012dir4.14.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2012rule1.1.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Rule Description Change
AUTOSAR C++14 Rule
A2-13-6

Universal character names shall
be used only inside character or
string literals.

The checker no longer flags
universal character names in
code deactivated with a
preprocessor directive such as
#if. You can enter universal
character names for non-string
uses in deactivated code.

AUTOSAR C++14 Rule
A5-1-1

Literal values shall not be used
apart from type initialization,
otherwise symbolic names shall
be used instead.

The checker now flags use of
literal values as template
parameters.

MISRA C++:2008 Rule
2-10-2

Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope.

The checker no longer flags
class member operators in
nested scopes. Class member
operators in nested scopes do
not hide each other.

MISRA C++:2008 Rule
3-4-1

An identifier declared to be an
object or type shall be defined in
a block that minimizes its
visibility.

The checker no longer flags
identifiers used only in a range-
based for loop but defined
outside the loop.

AUTOSAR C++14 Rule
A21-8-1

Arguments to character-
handling functions shall be
representable as an unsigned
char.

The checker now only detects
the use of a signed or plain
char variable with a negative
value as argument to a
character-handling function
declared in ctype.h, for
instance, isalpha() or
isdigit().

MISRA C++:2008 Rule
14-6-2

The function chosen by overload
resolution shall resolve to a
function declared previously in
the translation unit.

The checker no longer flags
calls that use an underlying
function call operator.

MISRA C++:2008 Rule
17-0-1

Reserved identifiers, macros
and functions in the Standard
Library shall not be defined,
redefined or undefined.

The checker raises a violation if
you define or redefine a macro
beginning with an underscore
followed by an uppercase letter.
These macros are typically
reserved for the Standard
Library.

CERT C: Rec. PRE01-C Use parentheses within macros
around parameter names.

The checker no longer flags
uses of the va_arg macro if the
macro parameters are not
enclosed in parentheses (in
accordance with the exception
in the CERT C specifications).

 Analysis Results

2-17

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule2102.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule2102.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule341.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule341.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2181.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2181.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1462.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1462.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1701.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1701.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.pre01c.html

Rule Description Change
CERT C++: DCL51-CPP Do not declare or define a

reserved identifier.
The checker now flags:

• Macros or identifiers
beginning with underscore
followed by an uppercase
letter.

• User-defined literal
operators if the operator
names do not begin with an
underscore (C++11 and
later).

By convention, these macros,
identifiers and operators are
reserved for the Standard
Library.

CERT C++: EXP52-CPP Do not rely on side effects in
unevaluated operands.

The checker now flags
decltype operations where the
operands have side effects.

CERT C: Rule EXP36-C and
CERT C++: EXP36-C

Do not cast pointers into more
strictly aligned pointer types.

The checker now flags:

• Conversion of void* pointer
into pointer to object.

• Source buffer misaligned
with destination buffer.

CERT C: Rule MSC39-C and
CERT C++: MSC39-C

Do not call va_arg() on a va_list
that has an indeterminate value.

The checker flags situations
where you might be using a
va_list that has an
indeterminate value.

CERT C: Rule MEM30-C and
CERT C++: MEM30-C

Do not access freed memory. The checker now flags attempts
to deallocate a previously freed
memory block.

CERT C: Rule MEM35-C and
CERT C++: MEM35-C

Allocate sufficient memory for
an object.

The checker now flags the use
of a pointer type as the
argument of the sizeof
operator in a malloc statement.
Use the type of the object to
which the pointer points as the
argument of the sizeof
operator.

CERT C: Rule EXP43-C Avoid undefined behavior when
using restrict-qualified pointers.

The checker now detects
situations where you assign a
restrict qualified pointer to
another restrict qualified
pointer such that they both
attempt to point to the same
object.

R2020b

2-18

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcdcl51cpp.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcexp52cpp.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleexp36c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcexp36c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemsc39c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmsc39c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemem30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleexp43c.html

Rule Description Change
CERT C: Rule EXP46-C and
CERT C++: EXP46-C

Do not use a bitwise operator
with a Boolean-like operand.

The checker now flags the use
of bitwise operators, such as:

• Bitwise AND (&, &=)
• Bitwise OR (|, |=)
• Bitwise XOR (^, ^=)
• Bitwise NOT(~)

with:

• Boolean type variables
• Outputs of relational or

equality expressions
CERT C: Rule STR37-C and
CERT C++: STR37-C

Arguments to character-
handling functions must be
representable as an unsigned
char.

The checker now only detects
the use of a signed or plain
char variable with a negative
value as argument to a
character-handling function
declared in ctype.h, for
instance, isalpha() or
isdigit().

 Analysis Results

2-19

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleexp46c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcexp46c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulestr37c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcstr37c.html

Rule Description Change
Coding rules that involve
detection of tainted data,
including:

• CERT C: Rec. INT04-C
• CERT C: Rec. INT10-C
• CERT C: Rule INT31-C

and CERT C++: INT31-C
• CERT C: Rule INT32-C

and CERT C++: INT32-C
• CERT C: Rule INT33-C

and CERT C++: INT33-C
• CERT C: Rule ARR30-C

and CERT C++: ARR30-C
• CERT C: Rule ARR32-C
• CERT C: Rule ARR38-C

and CERT C++: ARR38-C
• CERT C: Rec. STR02-C
• CERT C: Rule STR32-C

and CERT C++: STR32-C
• CERT C: Rec. MEM04-C
• CERT C: Rec. MEM05-C
• CERT C: Rule MEM35-C

and CERT C++: MEM35-C
• CERT C: Rule FIO30-C

and CERT C++: FIO30-C
• CERT C: Rec. ENV01-C
• CERT C: Rec. MSC21-C
• CERT C: Rec. WIN00-C
• AUTOSAR C++14 Rule

A5-6-1
• ISO/IEC TS 17961

[usrfmt]
• ISO/IEC TS 17961

[taintstrcpy]
• ISO/IEC TS 17961

[taintformatio]
• ISO/IEC TS 17961

[taintsink]

 The checkers now use a
narrower definition of tainted
data. The following are no
longer considered as tainted
data:

• Inputs to functions that do
not have a visible caller

• Return values of undefined
(stubbed) functions

• Global variables external to
the unit

See Sources of Tainting in a
Polyspace Analysis. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

R2020b

2-20

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.int04c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.int10c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleint31c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcint31c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleint32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcint32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleint33c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcint33c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulearr30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcarr30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulearr32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulearr38c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcarr38c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.str02c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulestr32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcstr32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.mem04c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.mem05c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulefio30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcfio30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.env01c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.msc21c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.win00c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea561.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea561.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961usrfmt.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961usrfmt.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintstrcpy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintstrcpy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintformatio.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintformatio.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintsink.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintsink.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html

Rule Description Change
MISRA C++:2008 Rule
0-1-4 and AUTOSAR C++14
Rule M0-1-4

A project shall not contain non-
volatile POD variables having
only one use.

• The checker now considers
dynamic assignments of a
variable, such as int var =
foo() as a single use of the
variable.

• Some objects are designed to
be used only once by their
semantics. Polyspace does
not flag a single use of these
objects:

• lock_guard
• scoped_lock
• shared_lock
• unique_lock
• thread
• future
• shared_future

If you use nonstandard
objects that provide similar
functionality as the objects in
the preceding list, Polyspace
might flag single uses of the
nonstandard objects. Justify
their single uses by using
comments.

Compatibility Considerations
If you checked your code for the preceding rules, you might see a change in the number of violations.

Updated Bug Finder defect checkers
Summary: In R2020b, these defect checkers have been updated.

 Analysis Results

2-21

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html

Defect Description Update
Tainted Data Defects Use of tainted and unvalidated

data in critical operations
The checkers now use a
narrower definition of tainted
data. The following are no
longer considered as tainted
data:

• Inputs to functions that do
not have a visible caller

• Return values of undefined
(stubbed) functions

• Global variables external to
the unit

See Sources of Tainting in a
Polyspace Analysis. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

Deterministic random
output from constant
seed and Predictable
random output from
predictable seed

Issues with seeding of random
number generator functions

The checkers now support
random number generator
functions from the C++
Standard Library, for instance,
std::linear_congruential
_engine<>::seed() and
std::mersenne_twister_en
gine<>::seed().

Large pass-by-value
argument

Functions pass large
parameters by value instead of
by reference

Checker is removed. Use
Expensive pass by value
and Expensive return by
value instead.

• Empty destructors may
cause unnecessary data
copies

• std::endl may cause an
unnecessary flush

Issues that impact performance
of C++ code

The Impact attribute of these
checkers has been changed
from High to Low.

These checkers do not have a
universally high criticality. The
checkers are critical only for
code that must be optimized for
performance.

R2020b

2-22

https://www.mathworks.com/help/releases/R2020b/bugfinder/tainted-data-defects.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivepassbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivereturnbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivereturnbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/std-endlmaycauseanunnecessaryflush.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/std-endlmaycauseanunnecessaryflush.html

Defect Description Update
Inefficient string
length computation

Issue that impacts performance
of C++ code

The Impact attribute of this
checker has been changed from
High to Medium.

This checker does not have a
universally high criticality. The
checker is critical only for code
that must be optimized for
performance and also promotes
a good coding style.

Missing return statement Issues with data flow This checker flags nonvoid
functions that do not return the
flow of execution except if the
function is specified as
[[noreturn]].

Compatibility Considerations
If you check your code for the preceding defects, you might see a difference in the number of issues
found.

Updated code metrics specifications
Summary: In R2020b, these code metrics specifications have been updated.

Code Metric Update
Number of Called Functions These metrics now accounts for function calls in a

C++ constructor initializer list.

For instance, in this code snippet, the number of
called functions of Derived::Derived() is one.
Previously, the number was computed as zero.

class Base
{
 int b;
 public:
 Base() {
 b = 0;
 };
};
class Derived : public Base
{
 int d;
 public:
 Derived() : Base() {
 d = 0;
 };
};

 Analysis Results

2-23

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/inefficientstringlengthcomputation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/inefficientstringlengthcomputation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/missingreturnstatement.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/numberofcalledfunctions.html

Compatibility Considerations
If you compute these code metrics, you can see a difference in results compared to previous releases.

R2020b

2-24

Reviewing Results

Results Export: Export Polyspace results to external formats such as
SARIF JSON
Summary: In R2020b, you can use the new polyspace-results-export command to export
Polyspace results to formats such as JSON and CSV.

• The JSON object follows the Static Analysis Results Interchange Format or SARIF notation.
• The CSV file has the same fields as produced by using the earlier polyspace-report-

generator command with the -generate-results-list-file option.

Use the polyspace-report-generator command to generate PDF or Word reports in a
predefined format. To package results using your own format, export them using the polyspace-
results-export command and read the resulting JSON object or CSV file.

You can use this command with results generated locally or with results uploaded to Polyspace
Access.

See also polyspace-results-export.

Benefits: Using the JSON object or CSV file, you can display results in a convenient format. For
instance, you can group defects found by Bug Finder based on their impact. Because the JSON object
follows a standard notation, you can also use this format to display Polyspace results with results
from other tools.

Simulink Block Annotation: Annotate Simulink blocks from Polyspace
user interface to justify Polyspace results
Summary: In R2020b, you can annotate a Simulink block directly from the Polyspace user interface.
See Annotate Blocks to Justify Issues (Polyspace Code Prover).

Benefits: Previously, when annotating a check on generated code from the Polyspace user interface,
you had to locate the corresponding block in the Simulink Editor and annotate the block again.
Starting in R2020b, you can annotate a check in the Polyspace user interface and have the
annotations carry over to the Simulink blocks by using the traceable elements of the code. You do not
have to go back to the model to re-enter the annotation.

User Authentication: Use a credentials file to pass your Polyspace
Access credentials at the command line
Summary: In R2020b, if you use a command that requires your Polyspace Access credentials, you
can save these credentials in a file that you pass to the command. If you use that command inside a
script, you no longer need to store your credentials in the script.

To create a credentials file, enter a set of credentials, either as -login and -encrypted-password
entries on separate lines, for example:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

 Reviewing Results

2-25

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceresultsexport.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/run-polyspace-analysis-in-simulink.html#mw_2882853c-552d-47c9-af1f-78a80f2f9059

Or as a -api-key entry:

-api-key keyValue123

For more information on generating API keys, see Configure User Manager (Polyspace Bug Finder
Access) (Polyspace Code Prover Access).

Save the file and pass it to the command by using the -credentials-file flag. You can use the
credentials file with these Polyspace commands:

• polyspace-access
• polyspace-results-export
• polyspace-report-generator

For increased security, restrict the read/write permissions for the credentials file.

Benefits: Previously, you could provide your Polyspace Access credentials in a script only by passing
them directly to the command. Starting R2020b, when the command that requires the credentials
runs, someone who is inspecting currently running processes, for instance, by using the command ps
aux on Linux, can no longer see your credentials.

Importing Review Information: Accept information in source or
destination results folder in case of merge conflicts
Summary: In R2020b, when importing review information such as severity, status, and comments at
the command line, if the same result has different review information in the source and destination
folder, you can choose one of the following:

• That the review information in the destination folder is retained.

This behavior is the default behavior of the polyspace-comments-import command.
• That the review information in the source folder overwrites the information in the destination

folder.

You can switch to this behavior using the new option -overwrite-destination-comments.

See also polyspace-comments-import.

Benefits: Previously, newer review information in the destination folder was retained and could not
be overwritten. Now, when merging review information, you can choose whether the source or
destination folder takes precedence in case of merge conflicts.

Source Code Tooltips: Display information related to only the currently
selected defect
Summary: In R2020b, Bug Finder tooltips show only information that is necessary to understand the
currently selected defect, such as:

• Data types of variables that lead to the current defect.
• One specific value of an input variable that leads to the current defect, if you enable the option

Run stricter checks considering all values of system inputs (-checks-using-
system-input-values)

R2020b

2-26

https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/gs/configure-the-user-manager.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_server/ref/polyspaceresultsexport.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_server/ref/polyspacereportgenerator.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspacecommentsimport.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html

In this tooltip, you see that the input parameter is a 32-bit int and the value -49 leads to the currently
selected defect.:

Previously, tooltips showed range information such as all possible values of a specific variable in the
given context. You can still see this range information in Code Prover.

Benefits: In Bug Finder, tooltips do not appear on any line other than ones related to the current
defect. When they appear, they contain only information required to understand the currently
selected defect.

Functionality being removed: Polyspace Metrics
Summary: The Polyspace Metrics web dashboard will be removed in a future release.

Compatibility Considerations
To continue monitoring the quality of your code in a web browser, use Polyspace Access instead. In
addition to a more intuitive dashboard, with Polyspace Access you can:

• Review and justify results directly from your web browser.
• Integrate a bug tracking tool such as Jira with the web interface and create tickets to track

Polyspace findings.
• Monitor the quality of your code against coding standards such as AUTOSAR C++14, CERT® C/C

++, and MISRA C.
• Define custom Quality Objectives definitions and apply them to specific projects.

For more information, see Polyspace Bug Finder Access .

See also Migrate Results from Polyspace Metrics to Polyspace Access (Polyspace Bug Finder Access)
(Polyspace Code Prover Access).

 Reviewing Results

2-27

https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/index.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/gs/migrate-results-from-polyspace-metrics-to-polyspace-access.html

R2020a

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

3

Analysis Setup

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers
Summary: If you build your source code by using MPLAB XC8 C compilers, in R2020a, you can
specify the compiler name for your Polyspace analysis.

See also MPLAB XC8 C Compiler (-compiler microchip).

Benefits: You can now set up a Polyspace project without knowing the internal workings of MPLAB
XC8 C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16
and XC32 compilers
Summary: If you use MPLAB XC16 or XC32 compilers to build your source code, in R2020a, you can
easily emulate these compilers by using the Polyspace GCC compiler options. See Emulate Microchip
MPLAB XC16 and XC32 Compilers.

For each compiler, you can emulate these target processor types:

• MPLAB XC16: Targets PIC24 and dsPIC.
• MPLAB XC32: Target PIC32.

Benefits: You can copy the analysis options required for emulating MPLAB XC16 or XC32 compilers
and paste into your Polyspace options file (or specify in a Polyspace project in the user interface), and
avoid compilation errors from issues specific to these compilers.

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors
Summary: In R2020a, if your source code contains non-ASCII characters, for instance, Japanese or
Korean characters, the Polyspace analysis can interpret the characters and later display the source
code correctly.

If you still have compilation errors or display issues from non-ASCII characters, you can explicitly
specify your source code encoding using the option Source code encoding (-sources-
encoding).

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/mplabxc8ccompilercompilermicrochip.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/sourcecodeencodingsoucesencoding.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/sourcecodeencodingsoucesencoding.html

Modifying Checkers: Create list of functions to prohibit and check for
use of functions from the list
Summary: In R2020a, you can define a blacklist of functions to forbid from your source code. The
Bug Finder checker Use of a forbidden function checks if a function from this list appears in
your sources.

Benefits: A function might be blacklisted for one of these reasons:

• The function can lead to many situations where the behavior is undefined leading to security
vulnerabilities, and a more secure function exists.

You can blacklist functions that are not explicitly checked by existing checkers such as Use of
dangerous standard function or Use of obsolete standard function.

• The function is being deprecated as part of a migration, for instance, from C++98 to C++11.

As part of a migration, you can make a list of functions that need to be replaced and use this
checker to identify their use.

See also Flag Deprecated or Unsafe Functions Using Bug Finder Checkers.

Simulink Support: Analyze custom C code in C Function blocks
Summary: In R2020a, Polyspace can check custom C code in C Function blocks for bugs and run-
time errors.

The analysis checks the C code in context of the model. In other words, the analysis uses design
ranges and other context information specified in the model.

To analyze custom C code in C Function block, select Custom Code Used in Model instead of Code
Generated as Top Model (meant for generated code) on the Polyspace tab in Simulink and then
start the analysis. In addition to functions called from C Caller blocks and Stateflow charts, the
custom code in C Function blocks are also checked for run-time errors. See Run Polyspace Analysis
on Custom Code in C Function Block.

Benefits: The Polyspace analysis of custom code now includes individual scripts in C Function blocks
(block introduced in Simulink in R2020a). In a single run, you can analyze all handwritten C code
invoked from your model and check for bugs, run-time errors or coding rule violations.

Changes in analysis options and binaries
Option -function-behavior-specifications renamed to -code-behavior-specifications and
capabilities extended
Warns

The option -function-behavior-specifications has been renamed to -code-behavior-
specifications.

Using this option, you could previously map your functions to standard library functions to work
around analysis imprecisions or specify thread creation routines. Now, you can use the option to
define a blacklist of functions to forbid from your source code.

See also -code-behavior-specifications.

 Analysis Setup

3-3

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofaforbiddenfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofobsoletestandardfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/flag-deprecated-functions-using-bug-finder-checkers.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/run-polyspace-analysis-on-custon-code-in-c-function-block.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/run-polyspace-analysis-on-custon-code-in-c-function-block.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/codebehaviorspecifications.html

Changes in MATLAB functions, options object and properties
polyspaceBugFinderNodesktop removed
Errors

Use polyspaceBugFinder(projectFile, '-nodesktop') instead of
polyspaceBugFinderNodesktop(projectFile).

pslinksetup removed
Errors

Use polyspacesetup instead of pslinksetup to integrate between Polyspace and Simulink (in the
same release or across releases). See Integrate Polyspace with MATLAB and Simulink.

R2020a

3-4

https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html

Analysis Results

Extending Checkers: Run stricter analysis that considers all possible
values of system inputs
Summary: In R2020a, you can run a stricter Polyspace Bug Finder analysis that checks the
robustness of your code against specific values of system inputs. For defects that are detected with
the stricter checks, the analysis can also show an example of values that lead to the defect. Use the
option Run stricter checks considering all values of system inputs (-checks-
using-system-input-values) to enable the stricter checks.

Benefits: For a subset of Numerical and Static memory defect checkers, the analysis considers all
possible values of:

• Global variables
• Reads of volatile variables
• Returns of stubbed functions
• Inputs to the functions you specify with the option Consider inputs to these functions

(-system-inputs-from)

See also Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

 Analysis Results

3-5

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/considerinputstothesefunctionssysteminputsfrom.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/considerinputstothesefunctionssysteminputsfrom.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/extend-polyspace-bug-finder-checkers-to-detect-numerical-edge-cases.html

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes,
special member functions, overloading and other groups
Summary: In R2020a, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-5 There shall be no unused named

parameters in the set of
parameters for a virtual function
and all the functions that
override it.

AUTOSAR C++14 Rule
A0-1-5

A2-3-1 Only those characters specified
in the C++ Language Standard
basic source character set shall
be used in the source code.

AUTOSAR C++14 Rule
A2-3-1

A2-7-1 The character \ shall not occur
as a last character of a C++
comment.

AUTOSAR C++14 Rule
A2-7-1

A2-10-1 An identifier declared in an
inner scope shall not hide an
identifier declared in an outer
scope.

AUTOSAR C++14 Rule
A2-10-1

A2-10-6 A class or enumeration name
shall not be hidden by a
variable, function or enumerator
declaration in the same scope.

AUTOSAR C++14 Rule
A2-10-6

A2-13-4 String literals shall not be
assigned to non-constant
pointers.

AUTOSAR C++14 Rule
A2-13-4

A2-13-6 Universal character names shall
be used only inside character or
string literals.

AUTOSAR C++14 Rule
A2-13-6

A3-3-2 Static and thread-local objects
shall be constant-initialized.

AUTOSAR C++14 Rule
A3-3-2

A4-5-1 Expressions with type enum or
enum class shall not be used as
operands to built-in and
overloaded operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=.

AUTOSAR C++14 Rule
A4-5-1

R2020a

3-6

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea015.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea015.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea271.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea271.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2134.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2134.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea332.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea332.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea451.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea451.html

AUTOSAR C++14 Rule Description Polyspace Checker
A4-10-1 Only nullptr literal shall be used

as the null-pointer-constraint.
AUTOSAR C++14 Rule
A4-10-1

A7-1-3 CV-qualifiers shall be placed on
the right hand side of the type
that is a typedef or a using
name.

AUTOSAR C++14 Rule
A7-1-3

A7-1-8 A non-type specifier shall be
placed before a type specifier in
a declaration.

AUTOSAR C++14 Rule
A7-1-8

A7-4-1 The asm declaration shall not be
used.

AUTOSAR C++14 Rule
A7-4-1

A8-2-1 When declaring function
templates, the trailing return
type syntax shall be used if the
return type depends on the type
of parameters.

AUTOSAR C++14 Rule
A8-2-1

A8-5-3 A variable of type auto shall not
be initialized using {} or ={}
braced-initialization.

AUTOSAR C++14 Rule
A8-5-3

A10-1-1 Class shall not be derived from
more than one base class which
is not an interface class.

AUTOSAR C++14 Rule
A10-1-1

A10-3-1 Virtual function declaration
shall contain exactly one of the
three specifiers: (1) virtual, (2)
override, (3) final.

AUTOSAR C++14 Rule
A10-3-1

A10-3-2 Each overriding virtual function
shall be declared with the
override or final specifier.

AUTOSAR C++14 Rule
A10-3-2

A10-3-3 Virtual functions shall not be
introduced in a final class.

AUTOSAR C++14 Rule
A10-3-3

A10-3-5 A user-defined assignment
operator shall not be virtual.

AUTOSAR C++14 Rule
A10-3-5

A11-0-2 A type defined as struct shall:
(1) provide only public data
members, (2) not provide any
special member functions or
methods, (3) not be a base of
another struct or class, (4) not
inherit from another struct or
class.

AUTOSAR C++14 Rule
A11-0-2

 Analysis Results

3-7

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea4101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea4101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea713.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea713.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea718.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea718.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea741.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea741.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea821.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea821.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea853.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea853.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1011.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1011.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1031.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1031.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1032.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1032.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1033.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1033.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1035.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1035.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1102.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1102.html

AUTOSAR C++14 Rule Description Polyspace Checker
A12-0-1 If a class declares a copy or

move operation, or a destructor,
either via "=default", "=delete",
or via a user-provided
declaration, then all others of
these five special member
functions shall be declared as
well.

AUTOSAR C++14 Rule
A12-0-1

A12-4-1 Destructor of a base class shall
be public virtual, public override
or protected non-virtual.

AUTOSAR C++14 Rule
A12-4-1

A12-8-6 Copy and move constructors
and copy assignment and move
assignment operators shall be
declared protected or defined
"=delete" in base class.

AUTOSAR C++14 Rule
A12-8-6

A13-1-2 User defined suffixes of the user
defined literal operators shall
start with underscore followed
by one or more letters.

AUTOSAR C++14 Rule
A13-1-2

A13-2-3 A relational operator shall
return a boolean value.

AUTOSAR C++14 Rule
A13-2-3

A13-5-1 If "operator[]" is to be
overloaded with a non-const
version, const version shall also
be implemented.

AUTOSAR C++14 Rule
A13-5-1

A13-5-2 All user-defined conversion
operators shall be defined
explicit.

AUTOSAR C++14 Rule
A13-5-2

A14-7-2 Template specialization shall be
declared in the same file (1) as
the primary template (2) as a
user-defined type, for which the
specialization is declared.

AUTOSAR C++14 Rule
A14-7-2

A14-8-2 Explicit specializations of
function templates shall not be
used.

AUTOSAR C++14 Rule
A14-8-2

A16-6-1 #error directive shall not be
used.

AUTOSAR C++14 Rule
A16-6-1

A17-6-1 Non-standard entities shall not
be added to standard
namespaces.

AUTOSAR C++14 Rule
A17-6-1

A18-1-3 The std::auto_ptr shall not be
used.

AUTOSAR C++14 Rule
A18-1-3

R2020a

3-8

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1201.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1201.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1241.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1241.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1286.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1286.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1312.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1312.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1323.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1323.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1351.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1351.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1352.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1352.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1472.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1472.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1482.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1482.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1661.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1661.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1761.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1761.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1813.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1813.html

AUTOSAR C++14 Rule Description Polyspace Checker
A18-1-6 All std::hash specializations for

user-defined types shall have a
noexcept function call operator.

AUTOSAR C++14 Rule
A18-1-6

A18-5-2 Operators new and delete shall
not be called explicitly.

AUTOSAR C++14 Rule
A18-5-2

A18-9-3 The std::move shall not be used
on objects declared const or
const&.

AUTOSAR C++14 Rule
A18-9-3

A23-0-1 An iterator shall not be
implicitly converted to
const_iterator.

AUTOSAR C++14 Rule
A23-0-1

CERT C Support: Check for CERT C rules related to threads and
hardcoded sensitive data, and recommendations related to macros
and code formatting
Summary: In R2020a, you can look for violations of these CERT C rules and recommendations in
addition to the previously supported ones. With these new rules, all CERT C rules can be checked
with Bug Finder.

Rules

CERT C Rule Description Polyspace Checker
CON34-C Declare objects shared between

threads with appropriate
storage durations

CERT C: Rule CON34-C

CON38-C Preserve thread safety and
liveness when using condition
variables

CERT C: Rule CON38-C

MSC41-C Never hard code sensitive
information

CERT C: Rule MSC41-C

POS47-C Do not use threads that can be
canceled asynchronously

CERT C: Rule POS47-C

POS50-C Declare objects shared between
POSIX threads with appropriate
storage durations

CERT C: Rule POS50-C

POS53-C Do not use more than one mutex
for concurrent waiting
operations on a condition
variable

CERT C: Rule POS53-C

 Analysis Results

3-9

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1816.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1816.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1852.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1852.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1893.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea1893.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2301.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2301.html
https://wiki.sei.cmu.edu/confluence/x/rNYxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrulecon34c.html
https://wiki.sei.cmu.edu/confluence/x/l9UxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrulecon38c.html
https://wiki.sei.cmu.edu/confluence/x/pwF2Bg
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrulemsc41c.html
https://wiki.sei.cmu.edu/confluence/x/qtYxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrulepos47c.html
https://wiki.sei.cmu.edu/confluence/x/j9UxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrulepos50c.html
https://wiki.sei.cmu.edu/confluence/x/cNUxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrulepos53c.html

Recommendations

CERT C Recommendation Description Polyspace Checker
PRE10-C Wrap multistatement macros in

a do-while loop
CERT C: Rec. PRE10-C

PRE11-C Do not conclude macro
definitions with a semicolon

CERT C: Rec. PRE11-C

EXP15-C Do not place a semicolon on the
same line as an if, for, or while
statement

CERT C: Rec. EXP15-C

CERT C++ Support: Check for CERT C++ rule related to hard coded
sensitive data, order of initialization in constructor and other issues
Summary: In R2020a, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
DCL58-CPP Do not modify the standard

namespaces
CERT C++: DCL58-CPP

MSC41-C Never hard code sensitive
information

CERT C++: MSC41-C

OOP53-CPP Write constructor member
initializers in the canonical
order

CERT C++: OOP53-CPP

CWE Support: Check for CWE rule related to incorrect block
delimitation
Summary: In R2020a, you can check for violation of this CWE rule in addition to previously
supported rules.

CWE Rule Description Polyspace Checkers
483 Incorrect block delimitation • Incorrectly indented

statement
• Semicolon on same line

as if, for or while
statement

For the full mapping between CWE rules and Polyspace Bug Finder defect checkers, see CWE Coding
Standard and Polyspace Results.

New Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and other issues
Summary: In R2020a, you can check for new types of defects.

R2020a

3-10

https://wiki.sei.cmu.edu/confluence/x/pdYxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrec.pre10c.html
https://wiki.sei.cmu.edu/confluence/x/idYxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrec.pre11c.html
https://wiki.sei.cmu.edu/confluence/x/WtYxBQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcrec.exp15c.html
https://wiki.sei.cmu.edu/confluence/x/Xnw-BQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcdcl58cpp.html
https://wiki.sei.cmu.edu/confluence/x/pwF2Bg
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcmsc41c.html
https://wiki.sei.cmu.edu/confluence/x/dXw-BQ
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/certcoop53cpp.html
https://cwe.mitre.org/data/definitions/483.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/incorrectlyindentedstatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/incorrectlyindentedstatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/cwe-and-polyspace-results.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/cwe-and-polyspace-results.html

A new category of C++-specific checkers checks for constructs that might cause performance issues
and suggests more efficient alternatives. Other checkers include security checkers for hard coded
sensitive data, good practice checkers for issues such as ill-formed macros and concurrency checkers
for issues such as asynchronously cancellable threads.

Performance Checkers

Defect Description
Const parameter values may cause
unnecessary data copies

Const parameter values prevent a move operation
resulting in a more performance-intensive copy
operation

Const return values may cause
unnecessary data copies

Const return values prevent a move operation
resulting in a more performance-intensive copy
operation

Empty destructors may cause
unnecessary data copies

User-defined empty destructors prevent
autogeneration of move constructors and move
assignment operators

Inefficient string length computation String length calculated by using string length
functions on return from
std::basic_string::c_str() instead of
using std::basic_string::length()

std::endl may cause an unnecessary
flush

std::endl is used instead of more efficient
alternatives such as \n

 Analysis Results

3-11

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/constparametervaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/constparametervaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/constreturnvaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/constreturnvaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/inefficientstringlengthcomputation.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/std-endlmaycauseanunnecessaryflush.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/std-endlmaycauseanunnecessaryflush.html

Other Checkers

Defect Description
Asynchronously cancellable thread Calling thread might be cancelled in an unsafe

state
Automatic or thread local variable
escaping from a thread

Variable is passed from one thread to another
without ensuring that variable stays alive for
duration of both threads

Hard-coded sensitive data Sensitive data is exposed in code, for instance as
string literals

Incorrectly indented statement Statement indentation incorrectly makes it
appear as part of a block

Macro terminated with a semicolon Macro definition ends with a semicolon
Macro with multiple statements Macro consists of multiple semicolon-terminated

statements, enclosed in braces or not
Missing final step after hashing
update operation

Hash is incomplete or non-secure

Missing private key for X.509
certificate

Missing key might result in run-time error or non-
secure encryption

Move operation on const object std::move function is called with object
declared const or const&

Multiple mutexes used with same
conditional variable

Threads using different mutexes when
concurrently waiting on the same condition
variable is undefined behavior

Multiple threads waiting on same
condition variable

Using cnd_signal to wake up one of the threads
might result in indefinite blocking

No data added into context Performing hash operation on empty context
might cause run-time errors

Possibly inappropriate data type for
switch expression

Switch expression has a data type other than
char, short, int or enum

Semicolon on the same line as an if,
for or while statement

Semicolon on same line results in empty body of
if, for or while statement

Server certificate common name not
checked

Attacker might use valid certificate to
impersonate trusted host

TLS/SSL connection method not set Program cannot determine whether to call client
or server routines

TLS/SSL connection method set
incorrectly

Program calls functions that do not match role
set by connection method

Unmodified variable not const-
qualified

Variable is not const-qualified but no
modification anywhere in the program

Use of a forbidden function Function appears in a blacklist of forbidden
functions

Redundant expression in sizeof operand sizeof operand contains expression that is not
evaluated

R2020a

3-12

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/asynchronouslycancellablethread.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/automaticorthreadlocalvariableescapingfromathread.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/automaticorthreadlocalvariableescapingfromathread.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/hardcodedsensitivedata.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/incorrectlyindentedstatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/macroterminatedwithasemicolon.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/macrowithmultiplestatements.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/missingfinalstepafterhashingupdateoperation.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/missingfinalstepafterhashingupdateoperation.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/missingprivatekeyforx.509certificate.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/missingprivatekeyforx.509certificate.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/moveoperationonconstobject.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/multiplemutexesusedwithsameconditionalvariable.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/multiplemutexesusedwithsameconditionalvariable.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/multiplethreadswaitingonsameconditionvariable.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/multiplethreadswaitingonsameconditionvariable.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/nodataaddedintocontext.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/possiblyinappropriatedatatypeforswitchexpression.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/possiblyinappropriatedatatypeforswitchexpression.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/servercertificatecommonnamenotchecked.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/servercertificatecommonnamenotchecked.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/tlssslconnectionmethodnotset.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/tlssslconnectionmethodsetincorrectly.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/tlssslconnectionmethodsetincorrectly.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/unmodifiedvariablenotconstqualified.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/unmodifiedvariablenotconstqualified.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofaforbiddenfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/redundantexpressioninsizeofoperand.html

Defect Description
X.509 peer certificate not checked Connection might be vulnerable to man-in-the-

middle attacks

Changes to coding rules checking
Summary: In R2020a, the following changes have been made in checking of previously supported
rules.

Rule Description Change
Some MISRA C: 2012 rules that
were previously specific to a C
standard

• C90-specific rules: 8.1,
17.3

• C99-specific rules: 3.2,
8.10, 21.11, 21.12

These rules are now checked
irrespective of the C standard.
The reason is that the
constructs flagged by these
rules can be found in code using
either standard, possibly with
language extensions.

MISRA C:2012 Rule 8.4 A compatible declaration shall
be visible when an object with
an external linkage is defined.

• The checker now flags
tentative definitions
(variables declared without
an extern specifier and not
explicitly defined), for
instance:

uint8_t var;
• The checker does not raise a

violation on the main
function.

MISRA C++:2008 Rule
0-1-3, AUTOSAR C++14 Rule
M0-1-3

A project shall not contain
unused variables.

The checker does not flag as
unused constants used in
template instantiations, such as
the variable size here:

const std::uint8_t size = 2;
std::array<uint8_t, size> arr = {0,1};

MISRA C++:2008 Rule
2-10-5

The identifier name of a non-
member object or function with
static duration should not be
reused.

The checker does not flag
situations where a variable
defined in a header file appears
to be reused because the header
file is included more than once,
possibly along different
inclusion paths.

 Analysis Results

3-13

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/x.509peercertificatenotchecked.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule8.1.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule17.3.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule3.2.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule8.10.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule21.11.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule21.12.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2012rule8.4.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2008rule013.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2008rule013.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulem013.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulem013.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2008rule2105.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2008rule2105.html

Rule Description Change
MISRA C++:2008 Rule
18-4-1

Dynamic heap memory
allocation shall not be used.

The checker now flags uses of
the alloca function. Though
memory leak cannot happen
with the alloca function, other
issues associated with dynamic
memory allocation, such as
memory exhaustion and
nondeterministic behavior, can
still occur.

Compatibility Considerations
If you checked for the rules mentioned above, you might see a change in the number of violations.

Updated Bug Finder defect checkers
Summary: In R2020a, these defect checkers have been updated.

Defect Description Update
Copy constructor not
called in initialization
list

Copy constructor does not call
copy constructors of some data
members

The checker no longer flags
copy constructors in templates.
In template declarations, the
member data types are not
known and it is not clear which
constructors need to be called.

Dead code Code does not execute If a try block contains a
return statement, the checker
no longer flags the
corresponding catch block as
dead code. A return statement
involves a copy and copy
constructors that are called
might throw exceptions,
resulting in the catch block
being executed.

Missing explicit keyword One-parameter constructor
missing the explicit specifier

The checker has been updated
to include user-defined
conversion operators declared
or defined in-class without the
explicit keyword.

R2020a

3-14

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2008rule1841.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/misrac2008rule1841.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/deadcode.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/missingexplicitkeyword.html

Defect Description Update
Missing return statement Function does not return value

though the return type is not
void

The checker respects the option
-termination-functions. If
Bug Finder incorrectly flags a
missing return statement on a
path where a process
termination function exists, you
can make the analysis aware of
the process termination function
using this option.

Compatibility Considerations
If you check for the defects mentioned above, you can see a difference in the number of issues found.

 Analysis Results

3-15

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/missingreturnstatement.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/terminationfunctions.html

Reviewing Results

Extending Checkers: See example value for defect found with stricter
analysis
Summary: In R2020a, if you enable Run stricter checks considering all values of
system inputs (-checks-using-system-input-values), you can see an example of values
that lead to the detected defect in the Results Details.

R2020a

3-16

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html

Benefits: You can use the example values to fix defects in your code that are due to specific system
input values.

 Reviewing Results

3-17

R2019b

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

4

Analysis Setup

Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers
Summary: If you build your source code by using Cosmic compilers, in R2019b, you can specify the
compiler name for your Polyspace analysis.

See also Cosmic Compiler (-compiler cosmic).

Benefits: You can now set up a Polyspace project without knowing the internal workings of Cosmic
compilers. If your code compiles with your compiler, it will compile with Polyspace in most cases
without requiring additional setup. Previously, you had to explicitly define macros that were implicitly
defined by the compiler and remove unknown language extensions from your preprocessed code.

Simulink Support: Analyze generated code by using contextual
buttons on the Simulink Editor toolstrip
Summary: In R2019b, a toolstrip with contextual buttons replaces the menus and toolbars in the
Simulink Editor. For details, see release notes.

Code generation and verification tasks appear in separate tabs on the Simulink toolstrip.

• To generate code, open the C Code tab. To access this tab, on the Apps tab, select Embedded
Coder.

• To analyze the generated code, open the Polyspace tab. To access this tab, on the Apps tab,
select Polyspace Code Verifier.

Benefits: The Simulink toolstrip includes contextual tabs, which appear only when you need them.

Additional Considerations

All menu items available earlier in the submenu Code > Polyspace now appear on the Polyspace
tab. See Changes in Polyspace Analysis Workflows in Simulink in R2019b.

R2019b

4-2

https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/cosmiccompilercompilercosmic.html
https://www.mathworks.com/help/releases/R2019b/simulink/release-notes.html#mw_6f1418b2-cde7-43e7-8b63-44437b0960e4
https://www.mathworks.com/help/releases/R2019b/bugfinder/ug/changes-in-polyspace-analysis-workflows-in-simulink-in-r2019a.html

Simulink Support: Verify custom code called from C Caller blocks and
Stateflow charts in context of model
Summary: In R2019b, Polyspace can check functions called from C Caller blocks for bugs and run-
time errors. The analysis extracts the functions' inputs and other call context information from the
model.

See Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts.

Benefits:

• Check whether handwritten code called from model has issues:

You typically use model verification software such as Simulink Design Verifier™ to check for bugs
and run-time errors in a model. The model verification software shows only a small subset of run-
time errors in handwritten code loaded on C Caller blocks and Stateflow® charts. With Polyspace,
you can check for bugs, run-time errors, coding standard violations and many other issues in
handwritten code directly from your Simulink model and supplement the checks at the model
level.

• Use call context information for handwritten functions from signal ranges in model:

The analysis uses call context information from the model. For instance, in this simple model, the
function times_n is called in two C caller blocks (named Multiply_unbounded_input and
Multiply_bounded_input).

 Analysis Setup

4-3

https://www.mathworks.com/help/releases/R2019b/simulink/slref/ccaller.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ug/run-polyspace-analysis-on-custom-code-in-c-caller-blocks-and-stateflow-charts.html

When you analyze custom code, in this case the function times_n, the analysis shows that an
operation in the custom code can overflow. From the analysis results, you can determine that the
overflow occurs only when the function is called in the Multiply_unbounded_input block but
not when it is called from the Multiply_bounded_input block.

Simulink Support: Compare two Polyspace result sets and see the
effect of changes in model or code generation parameters
Summary: In R2019b, you can open previous Polyspace results on a model directly from the Simulink
editor. You can look at two Polyspace result sets for side-by-side comparison.

Benefits: Previously, you could open only the latest result from the Simulink Editor. To open a
previous result, you had to locate the result outside Simulink in your file explorer and open the result
in the Polyspace user interface. You can now perform these actions more easily:

• Change a section of the model or a code generation option, regenerate code, rerun Polyspace,
open the new results, and compare with a previous result.

• Change a Polyspace analysis option, rerun Polyspace, open the new results, and compare with a
previous result.

Configuration from Build System: Compiler version automatically
detected from build system
Summary: In R2019b, if you create a Polyspace analysis configuration from your build system by
using the polyspace-configure command or in the user interface, the analysis uses the correct

R2019b

4-4

compiler version for the option Compiler (-compiler) for GNU® C, Clang, and Microsoft® Visual
C++® compilers. You do not have to change the compiler version before starting the Polyspace
analysis.

Benefits: Previously, if you traced your build system to create a Polyspace analysis configuration, the
latest supported compiler version was used in the configuration. If your code was compiled with an
earlier version, you might encounter compilation errors and have to explicitly specify an earlier
compiler version before starting the analysis.

For instance, if the Polyspace analysis configuration uses the version GCC 4.9 and some of the
standard headers in your GCC version include the file x86intrin.h, you can see a compilation error
such as this error:
/usr/lib/gcc/x86_64-linux-gnu/6/include/avx512bwintrin.h, line 2427:
 error: invalid type conversion
| return (__m512i) __builtin_ia32_packssdw512_mask ((__v16si) __A,
|

You had to connect the error to the incorrect compiler version, and then explicitly set a different
version. Now, the compiler version is automatically detected when you create a project from your
build command.

Changes in MATLAB functions, options object and properties
Direct file specification not allowed for CodingRulesCodeMetrics properties that denote
rule subsets
Errors

The properties of a polyspace.Project object that indicate coding rule subsets no longer take a
text file as argument. To specify a custom subset of rules, instead of specifying a text file directly, use
the value from-file and then specify an XML file using the CheckersSelectionByFile property.
For instance, if proj is a polyspace.Project object, instead of:
proj.Configuration.CodingRulesCodeMetrics.MisraCppSubset = 'C:\rules.txt';

use:
proj.Configuration.CodingRulesCodeMetrics.MisraCppSubset = 'from-file';
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;
proj.Configuration.CodingRulesCodeMetrics.CheckersSelectionByFile = 'C:\rules.xml';

where rules.xml contains the same specifications as rules.txt.

You can convert existing text files into XML files in the Polyspace user interface. In the Coding

Standards & Code Metrics node of the Configuration pane, click . In the Findings selection

 Analysis Setup

4-5

https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/compilercompiler.html

window, select the files then click Save Changes. Polyspace consolidates the files into a single XML
file, and saves this file as filename.xml, where filename is the name of the first selected file
alphabetically. For instance, if you select the text files foo.conf and bar.conf, they are saved as
bar.conf.xml.

The change affects these subproperties of the CodingRulesCodeMetrics property:

• AcAgcSubset
• JsfSubset
• MisraC3Subset
• MisraCSubset
• MisraCppSubset

See also polyspace.Project.Configuration Properties.

Format for specifying properties of polyspace.CodingRulesOptions object changed
Errors

The properties of the polyspace.CodingRulesOptions object are now grouped into sections.
Instead of specifying a rule directly, specify the containing section first and then the rule.

For instance, if rules is a polyspace.CodingRulesOptions object that specifies MISRA C:2012
rules, instead of:

rules.rule_2_1 = false;

use:

rules.Section_2_Unused_code.rule_2_1 = false;

To find the section number for a rule, see Coding Standards. To find the property corresponding to
the section name, use auto-completion for MATLAB object properties.

See also polyspace.CodingRulesOptions.

Using checkers selection file required for polyspace.CodingRulesOptions object
Errors

If you assign a polyspace.CodingRulesOptions object to an analysis configuration, for instance:
misraRules = polyspace.CodingRulesOptions('misraC2012');
proj = polyspace.Project;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;

You must also enable the use of a checkers selection file, for instance:
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

You have to enable checkers selection by file because the Polyspace run uses an XML file underneath
to enable the coding rule checkers. The XML file is saved in a .settings subfolder of the results
folder.

See also polyspace.CodingRulesOptions.

R2019b

4-6

https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/polyspace.options-properties.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/coding-rule-reference.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/polyspace.codingrulesoptions-class.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/polyspace.codingrulesoptions-class.html

Analysis Results

AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and other issues
In R2019b, you can look for violations of these AUTOSAR C++14 rules in addition to previously
supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-4 There shall be no unused named

parameters in non-virtual
functions.

AUTOSAR C++14 Rule
A0-1-4

A3-1-2 Header files, that are defined
locally in the project, shall have
a file name extension of one
of: .h, .hpp or .hxx.

AUTOSAR C++14 Rule
A3-1-2

A5-1-2 Variables shall not be implicitly
captured in a lambda
expression.

AUTOSAR C++14 Rule
A5-1-2

A5-1-3 Parameter list (possibly empty)
shall be included in every
lambda expression.

AUTOSAR C++14 Rule
A5-1-3

A5-1-4 A lambda expression shall not
outlive any of its reference-
captured objects.

AUTOSAR C++14 Rule
A5-1-4

A5-1-7 A lambda shall not be an
operand to decltype or
typeid.

AUTOSAR C++14 Rule
A5-1-7

A5-16-1 The ternary conditional operator
shall not be used as a sub-
expression.

AUTOSAR C++14 Rule
A5-16-1

A7-2-2 Enumeration underlying base
type shall be explicitly defined.

AUTOSAR C++14 Rule
A7-2-2

A7-2-3 Enumerations shall be declared
as scoped enum classes.

AUTOSAR C++14 Rule
A7-2-3

A16-0-1 The preprocessor shall only be
used for unconditional and
conditional file inclusion and
include guards, and using the
following directives: (1)
#ifndef, (2) #ifdef, (3) #if,
(4) #if defined, (5) #elif,
(6) #else, (7) #define, (8)
#endif, (9) #include.

AUTOSAR C++14 Rule
A16-0-1

A16-7-1 The #pragma directive shall not
be used.

AUTOSAR C++ 14 Rule
A16-7-1

 Analysis Results

4-7

https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea014.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea014.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea312.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea312.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea512.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea512.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea513.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea513.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea514.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea514.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea517.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea517.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea723.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea723.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1601.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1601.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1671.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1671.html

AUTOSAR C++14 Rule Description Polyspace Checker
A18-1-1 C-style arrays shall not be used. AUTOSAR C++ 14 Rule

A18-1-1
A18-1-2 The std::vector<bool>

specialization shall not be used.
AUTOSAR C++ 14 Rule
A18-1-2

A18-5-1 Functions malloc, calloc,
realloc and free shall not be
used.

AUTOSAR C++ 14 Rule
A18-5-1

A18-9-1 The std::bind shall not be
used.

AUTOSAR C++ 14 Rule
A18-9-1

For all supported AUTOSAR C++14 rules, see AUTOSAR C++14 Rules.

CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and other issues
In R2019b, you can look for violations of these CERT C++ rules in addition to previously supported
rules.

CERT C++ Rule Description Polyspace Checker
DCL59-CPP Do not define an unnamed

namespace in a header file
CERT C++: DCL59-CPP

EXP61-CPP A lambda object shall not outlive
any of its reference captured
objects.

CERT C++: EXP61-CPP

MEM57-CPP Avoid using default operator
new for over-aligned types

CERT C++: MEM57-CPP

ERR61-CPP Catch exceptions by lvalue
reference

CERT C++: ERR61-CPP

OOP57-CPP Prefer special member functions
and overloaded operators

CERT C++: OOP57-CPP

For all supported CERT C++ rules, see CERT C++ Rules.

CERT C Support: Check for undefined behavior from successive joining
or detaching of the same thread
In R2019b, you can look for violations of these CERT C rules in addition to previously supported
rules.

CERT C Rule Description Polyspace Checker
CON39-C Do not join or detach a thread

that was previously joined or
detached

CERT C: Rule CON39-C

For all supported CERT C guidelines, see CERT C Rules and Recommendations.

R2019b

4-8

https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1811.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1811.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1812.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1812.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1851.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1851.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1891.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/autosarc14rulea1891.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/autosar-c-14.html
https://wiki.sei.cmu.edu/confluence/x/VXs-BQ
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/certcdcl59cpp.html
https://wiki.sei.cmu.edu/confluence/x/Vns-BQ
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/certcexp61cpp.html
https://wiki.sei.cmu.edu/confluence/x/hns-BQ
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/certcmem57cpp.html
https://wiki.sei.cmu.edu/confluence/x/SXs-BQ
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/certcerr61cpp.html
https://wiki.sei.cmu.edu/confluence/x/lHs-BQ
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/certcoop57cpp.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/cert-c-rules.html
https://wiki.sei.cmu.edu/confluence/x/L9UxBQ
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/certcrulecon39c.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/cert-c-rules-and-recommendations.html

New Bug Finder Defect Checkers: Check for new security
vulnerabilities, multithreading issues, missing C++ overloads, and
other issues
Summary: In R2019b, you can check for these new types of defects.

Defect Description
Unnamed namespace in header file Header file contains unnamed namespace leading

to multiple definitions
Lambda used as decltype or typeid
operand

decltype or typeid is used on lambda
expression

Operator new not overloaded for
possibly overaligned class

Allocated storage might be smaller than object
alignment requirement

Bytewise operations on nontrivial
class object

Value representations may be improperly
initialized or compared

Missing hash algorithm Context in EVP routine is initialized without a
hash algorithm

Missing salt for hashing operation Hashed data is vulnerable to rainbow table attack
Missing X.509 certificate Server or client cannot be authenticated
Missing certification authority list Certificate for authentication cannot be trusted
Missing or double initialization of
thread attribute

Noninitialized thread attribute used in functions
that expect initialized attributes or duplicated
initialization of thread attributes

Use of undefined thread ID Thread ID from failed thread creation used in
subsequent thread functions

Join or detach of a joined or detached
thread

Thread that was previously joined or detached is
joined or detached again

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used
Summary: In R2019b, you can look for violations of MISRA C:2012 Directive 4.12. The directive
states that dynamic memory allocation and deallocation packages provided by the Standard Library
or third-party packages shall not be used. The use of these packages can lead to undefined behavior.

See MISRA C:2012 Dir 4.12.

Updated Bug Finder defect checkers
Summary: In R2019b, this defect checker has been updated.

Defect Description Update
Pointer or reference to
stack variable leaving
scope

Pointer to local variable leaves
the variable scope

The checker now detects
pointer escape via lambda
expressions.

 Analysis Results

4-9

https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/unnamednamespaceinheaderfile.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/lambdausedasdecltypeortypeidoperand.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/lambdausedasdecltypeortypeidoperand.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/operatornewnotoverloadedforpossiblyoveralignedclass.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/operatornewnotoverloadedforpossiblyoveralignedclass.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/bytewiseoperationsonnontrivialclassobject.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/bytewiseoperationsonnontrivialclassobject.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/missinghashalgorithm.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/missingsaltforhashingoperation.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/missingx.509certificate.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/missingcertificationauthoritylist.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/missingordoubleinitializationofthreadattribute.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/missingordoubleinitializationofthreadattribute.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/useofundefinedthreadid.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/joinordetachofajoinedordetachedthread.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/joinordetachofajoinedordetachedthread.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/misrac2012dir4.12.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/bugfinder/ref/pointerorreferencetostackvariableleavingscope.html

Compatibility Considerations
If you check for the defect mentioned above, you can see a difference in the number of issues found.

R2019b

4-10

Reviewing Results

Code Annotations: Justify Bug Finder results by using annotations
spread over multiple lines
Summary: In R2019b, you can enter multi-line code annotations to justify Polyspace results.
Subsequent runs can use these annotations and automatically populate the severity, status, and
comments fields for previously reviewed results.

See Annotate Code and Hide Known or Acceptable Results.

Benefits: Previously, the entire Polyspace annotation could span one line only. With the single-line
constraint removed, you can add more detailed explanations in code annotations and view the entire
annotation in your code editor, or let your code editor wrap the annotations. For instance, you can
enter a code annotation like this annotation:

x++; /* polyspace DEFECT:FLOAT_OVFL "This operation
 cannot overflow
 because of
 external constraints" */

 Reviewing Results

4-11

https://www.mathworks.com/help/releases/R2019b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html

R2019a

Version: 3.0

New Features

Bug Fixes

Compatibility Considerations

5

Analysis Setup

Polyspace-only Licenses: Install Polyspace without MATLAB
installation
Summary: In R2019a, you can install the Polyspace products without a MATLAB installation.

Benefits: If you use Windows® or Linux® binaries to automate your Polyspace analysis and do not
otherwise use MATLAB in your workflow, you do not require a MATLAB installation. However, if you
want to use the conveniences of MATLAB scripting such as easy reading and visualization of
Polyspace results and syntax completion for functions, you can install MATLAB separately and link
with your Polyspace installation.

Compatibility Considerations
If you use MATLAB scripts to run Polyspace, you can continue to run your scripts as before. However,
your initial set up is different from previous releases:

• Run the MathWorks® installer twice with separate licenses to install MATLAB and Polyspace in
separate folders.

• Perform a setup step to link your Polyspace installation with your MATLAB installation.

See Integrate Polyspace with MATLAB and Simulink.

New Polyspace Products Supporting Continuous Integration: Perform
automated code analysis after code submission with Polyspace Bug
Finder Server and Polyspace Bug Finder Access
Summary: R2019a brings new Polyspace products for automated runs on server class machines:

• Polyspace Bug Finder Server and Polyspace Bug Finder Access
• Polyspace Code Prover Server and Polyspace Code Prover Access

The current products, Polyspace Bug Finder and Polyspace Code Prover™, can be used by individual
developers on their desktops.

Benefits: The new Polyspace products are designed for automated runs in a continuous integration
workflow. With the new products, the Polyspace suite of products now supports all phases of a
software development process:

• Prior to code submission:

Developers can run the Polyspace desktop products to check their code during development or
right before submission to meet predefined quality goals.

The desktop products can be plugged in IDEs such as Eclipse™ or run with scripts, for instance
during compilation. The analysis results can be reviewed in IDEs such as Eclipse or in the
graphical user interface of the desktop products.

• After code submission:

R2019a

5-2

https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html

The Polyspace server products can run automatically on newly committed code as a build step in a
continuous integration process (using tools such as Jenkins). The analysis runs on a server using
the product Polyspace Bug Finder Server™ or Polyspace Code Prover Server and the results are
uploaded to the Polyspace Access web interface for collaborative review.

See Polyspace Products for Code Analysis and Verification.

For more information on the new products, see:

• Polyspace Bug Finder Server
• Polyspace Code Prover Server
• Polyspace Bug Finder Access
• Polyspace Code Prover Access

Offloading Polyspace Analysis to Servers: Use Polyspace desktop
products on client side and server products on server side
Summary: In R2019a, you can offload a Polyspace analysis from your desktop to remote servers by
installing the Polyspace desktop products on the client side and the Polyspace server products on the
server side. After analysis, the results are downloaded to the client side for review. You must also
install MATLAB Parallel Server™ on the server side to manage submissions from multiple client
desktops.

 Analysis Setup

5-3

https://www.mathworks.com/help/releases/R2019a/bugfinder/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/release-notes.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_server/release-notes.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_access/release-notes.html
https://www.mathworks.com/help/releases/R2019a/polyspace_code_prover_access/release-notes.html

See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.

You can also follow a workflow where Polyspace runs on a dedicated server after code submission and
uploads results to a web interface for review. In this case, you require one or more Polyspace Bug
Finder Server license for running the analysis on dedicated servers and Polyspace Bug Finder Access
licenses to review the results.

Benefits: The Polyspace desktop products have a graphical user interface. You can configure options
in the user interface with assistance from features such as auto-population of option arguments and
contextual help. To save processing time on your desktop, you can then offload the analysis to remote
servers.

Compatibility Considerations
If you offloaded analysis results from your desktop to remote servers prior to R2019a, your initial
setup is different from previous releases.

• On the client side, you do not require Parallel Computing Toolbox™. You only require the
Polyspace desktop product, Polyspace Bug Finder.

R2019a

5-4

https://www.mathworks.com/help/releases/R2019a/bugfinder/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

• On the server side, instead of the desktop product, Polyspace Bug Finder, you must install the
server product, Polyspace Bug Finder Server. You still require MATLAB Parallel Server (previously
called MATLAB Distributed Computing Server).

You install the Polyspace server products and MATLAB Parallel Server in separate folders and link
between them.

See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.
• You do not have the quick start option to start the server with one worker (the Metrics and

Remote Analysis Server Settings interface). Instead you must use the Admin Center interface
in MATLAB Parallel Server. In this workflow, you first start the services on all remote computers,
then assign responsibilities to these computers as either the head node that schedules jobs or
worker nodes that run the analysis.

See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.

Support for Security Standards: Check explicitly for subsets of CERT
C, CERT C++ or ISO/IEC TS 17961 rules
Summary: In R2019a, you can check explicitly for violations of the CERT C, CERT C++ or ISO/IEC
TS 17961 standard. You can check for all supported rules from the standard or reduce the checking
to a predefined subset or your own subset of rules.

See Check for Coding Standard Violations.

Benefits:

• Direct configuration of security standards: You can specify rules from the security standards
directly in your analysis configuration. Previously, to check for a security standard, you configured
Bug Finder checkers by using an external mapping between the checkers and rules from the
standard.

• More fine-grained control on checking of security standards: Instead of checking for all supported
rules, you can configure smaller subsets of the standards based on your requirements. You can
check your code for up to a single rule from a standard.

Compatibility Considerations
In previous releases, to check for a security standard, you configured Bug Finder checkers in your
analysis configuration. In the list of results, you enabled a CERT ID or ISO-17961 ID column to see
the CERT C or ISO/IEC TS 17961 rules corresponding to a defect. In R2019a, if you are interested in
standards such as CERT C, CERT C++ or ISO/IEC TS 17961, use a workflow that is directly geared

 Analysis Setup

5-5

https://www.mathworks.com/help/releases/R2019a/bugfinder/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/check-for-coding-rule-violations.html

towards the standard. Enable rules from the standard that you are interested in and see rule
violations explicitly in your analysis results.

See also Changes in Coding Standard Checking in R2019a.

Coding Standard Support: Enforce common standards across team or
organization by reusing checker configuration
Summary: In R2019a, you can specify the coding standard checkers independently from the
remaining analysis configuration. You can reuse this specification across multiple Polyspace projects.

Reusable coding standard specifications are supported for the standards MISRA C: 2004, MISRA C:
2012, MISRA C++, JSF++, CERT C, CERT C++, ISO/IEC TS 17961 and AUTOSAR C++14.

See Check for Coding Standard Violations.

Benefits:

• Project-specific settings decoupled from project-independent settings: Analysis options such as
macro definitions and entry points for multitasking can be specific to the source files in a project

R2019a

5-6

https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/check-for-coding-rule-violations.html

while the coding standard checkers can apply to multiple projects. You can now separate the
checker specifications from the project-specific options and reuse the checkers across multiple
projects. Previously, reusable checker specifications were not directly supported.

• Common standard across team: You can enforce common coding standards across a team or
organization by reusing checker specifications across all projects.

Collaborative Review Support: Upload results from Polyspace user
interface to Polyspace Access web interface and share results using
web links
Summary: In R2019a, you can upload Polyspace Bug Finder results to the Polyspace Access web
interface. Developers with a Polyspace Bug Finder Access license can review these results in the web
interface and share the results using web links.

To upload results from the Polyspace user interface, select Tools > Preferences. On the Server
Configuration tab, enter the URL of the Polyspace Access web interface and the client keystore path
and password.

 Analysis Setup

5-7

After setting up communication between the Polyspace user interface and the Polyspace Access web
interface, the Access menu appears in the Polyspace user interface. You can use this menu to open
the web interface, open results from the web interface in the user interface of the desktop product or
upload results from the desktop product to the web interface.

R2019a

5-8

For details about setting up and reviewing results in the Polyspace Access web interface, see
Polyspace Bug Finder Access documentation.

Benefits::

• Facilitate collaborative review: The web interface streamlines the review efforts of your team. For
instance:

• During a team meeting, findings can be assessed and assigned to developers.
• Developers can log into the web interface to review findings assigned to them, and determine

whether to justify the findings or fix them.
• A project manager can track the progress of the review by filtering the list of results for
findings that are still open.

• Authenticate client access: The web interface is behind a login. Only users with a Polyspace Bug
Finder Access license and the appropriate credentials can view the results from their web
browser.

Compiler Support: Set up Polyspace analysis easily for code compiled
with ARM v5 and v6 compilers
Summary: If you build your source code using these compilers, in R2019a, you can specify the
compiler name for your Polyspace analysis:

• ARM® v5

You can specify target arm.

See ARM v5 Compiler (-compiler armcc).
• ARM v6

You can specify targets arm and arm64.

 Analysis Setup

5-9

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_access/index.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/armv5compilercompilerarmcc.html

See ARM v6 Compiler (-compiler armclang).

Benefits:You can now set up a Polyspace project without knowing the internal workings of these
compilers. If your code compiles with your compiler, it will compile with Polyspace in most cases
without requiring additional setup. Previously, you had to explicitly define macros that were implicitly
defined by the compiler and remove unknown language extensions from your preprocessed code.

Updated GCC, Clang, and Visual C++ Compiler Support: Set up
Polyspace analysis easily for code compiled with GCC versions 7.x,
Clang versions 4.x or 5.x, or Microsoft Visual C++ 2017 compilers
Summary: In R2019a, if you build your source code using these version of GCC, Clang, or Microsoft
Visual C++ compilers, you can specify the following compiler option values to setup your Polyspace
analysis:

•

gnu7.x for GCC release 7.1, 7.2, and 7.3.
•

clang4.x for LLVM release 4.0.0, and 4.0.1.
•

clang5.x for LLVM release 5.0.0, and 5.0.1.
•

visual15.x for Microsoft Visual C++ 2017 versions 15.0 to15.7.

The analysis can interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

For more information, see Compiler (-compiler).

R2019a

5-10

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/armv6compilercompilerarmclang.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/compilercompiler.html

Simulink Toolstrip: Analyze generated code using contextual buttons
in Simulink Editor
Summary: In R2019a, you have the option to turn on the Simulink Toolstrip.

• To enable the toolstrip, select File > Simulink Preferences. On the Editor node, select Replace
menus and toolbars with the Simulink Toolstrip (Tech Preview).

• To disable the toolstrip, on the Modeling tab, select Environment > Simulink Preferences.
Clear the previous selection.

See Simulink Toolstrip Tech Preview replaces menus and toolbars in the Simulink Desktop for more
details.

Benefits: The Simulink Toolstrip includes contextual tabs, which appear only when you need them.
The Polyspace contextual tab includes options for completing actions that apply only to Polyspace.

• To generate code, open the C Code tab. To access this tab, on the Apps tab, select Embedded
Coder.

• To analyze the generated code, open the Polyspace tab. To access this tab, on the Apps tab,
select Polyspace Code Verifier.

On the Polyspace tab:

1 After code generation, from the Verification Objectives menu, choose Find Bugs (Bug Finder)
or Prove Code (Code Prover).

2 Optionally, configure code analysis options. To configure the basic options related to the model,
select Settings > Polyspace Settings. To configure advanced options related to the generated
code, select Settings > Project.

3 To start an analysis, select Run Analysis. The analysis runs on the model element selected,
provided code has been generated earlier from the same element. The selected element appears
in the Analyze Code from field. To select the entire model, click anywhere on the canvas outside
a model element.

Compatibility Considerations
The Simulink Toolstrip included with R2019a is a tech preview. You may encounter performance
issues when you enable the toolstrip. Documentation does not reflect the addition of the Simulink
Toolstrip and toolstrip customization is not available.

Changes in analysis options and binaries
polyspace-bug-finder-nodesktop renamed to polyspace-bug-finder
Warns

 Analysis Setup

5-11

https://www.mathworks.com/help/releases/R2019a/simulink/release-notes.html?rntext=&startrelease=R2019a&endrelease=R2019a&rntype=incompatibility&category=simulink-editor

The command-line options available with polyspace-bug-finder are the same as those with
polyspace-bug-finder-nodesktop (with the exception of changes mentioned below). Simply
replace polyspace-bug-finder-nodesktop with polyspace-bug-finder in your batch files or
shell scripts.

-report-template arguments changed for coding standard templates
Warns

A single report template CodingStandards.rpt is used for all coding standards (other than CWE).
In particular, if you used these old templates as arguments for the option -report-template,
switch to the new template:

• CodingRules.rpt
• SecurityCERT.rpt
• SecurityISO_17961.rpt

See also Changes in Coding Standard Checking in R2019a.

Find defects (-checkers) option values CERT-rules, CERT-all, and ISO-17961 are removed
Warns

Find defects (-checkers) option values CERT-rules, CERT-all, and ISO-17961 are
removed. Previously, you used Find defects (-checkers) with these options values to check your
code for violations of the CERT C, CERT C++, and ISO/IEC TS 17961 coding standards. Use the new
Coding Standards & Code Metrics analysis options Check SEI CERT-C (-cert-c), Check SEI
CERT-C++ (-cert-cpp), and Check ISO/IEC TS 17961 (-iso-17961) instead.

The new analysis options simplify checking for violations of coding standards CERT C, CERT C++,
and ISO/IEC TS 17961. For more information, see Changes in Coding Standard Checking in R2019a

In the Polyspace user interface, if an option is replaced by another option, the replacement occurs
automatically in your configuration. To update your scripts, see these tables.

If the source code language is C:

Option Use Instead
-checkers CERT-rules -cert-c all-rules
-checkers CERT-all -cert-c all
-checkers ISO-17961 -iso-17961 all

If the source code language is C++:

Option Use Instead
-checkers CERT-rules -cert-cpp all
-checkers CERT-all

You get a warning and when you use the removed option values at the command line. The
corresponding new options are applied automatically.

Check MISRA C:2012 (-misra3) option values CERT-rules, CERT-all, and ISO-17961 are
removed
Warns

R2019a

5-12

https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/finddefectscheckers.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkseicertccertc.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkseicertccertcpp.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkseicertccertcpp.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkisoiects17961iso17961.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html

Check MISRA C:2012 (-misra3) option values CERT-rules, CERT-all, and ISO-17961 are
removed. Previously, you used Check MISRA C:2012 (-misra3) with these options values to check
your code for violations of the CERT C and ISO/IEC TS 17961 coding standards. Use the new Coding
Standards & Code Metrics analysis options Check SEI CERT-C (-cert-c) and Check
ISO/IEC TS 17961 (-iso-17961) instead.

The new analysis options simplify checking for violations of coding standards CERT C and ISO/IEC TS
17961. For more information, see Changes in Coding Standard Checking in R2019a

In the Polyspace user interface, if an option is replaced by another option, the replacement occurs
automatically in your configuration. To update your scripts, see this table.

Option Use Instead
-misra3 CERT-rules -cert-c all-rules
-misra3 CERT-all -cert-c all
-misra3 ISO-17961 -iso-17961 all

You get a warning when you use the removed option values at the command line.

Check MISRA C++ rules (-misra-cpp) option values CERT-rules and CERT-all are removed
Warns

Check MISRA C++:2008 (-misra-cpp) option values CERT-rules and CERT-all are removed.
Previously, you used Check MISRA C++ rules (-misra-cpp) with these options values to check your
code for violations of the CERT C++ coding standards. Use the new Coding Standards & Code
Metrics analysis option Check SEI CERT-C++ (-cert-cpp) instead.

The new analysis option simplifies checking for violations of the CERT C++ coding standard. For
more information, see Changes in Coding Standard Checking in R2019a

In the Polyspace user interface, if an option is replaced by another option, the replacement occurs
automatically in your configuration. To update your scripts, see this table.

Option Use Instead
-misra-cpp CERT-rules -cert-cpp all
-misra-cpp CERT-all

You get a warning when you use the removed option values at the command line.

Changes in MATLAB functions, options object and properties
Initial setup required for running Polyspace from MATLAB
Behavior change

If you use MATLAB scripts to run Polyspace, you can continue to run your scripts as before. However,
your initial setup is different compared to previous releases:

• Run the MathWorks installer twice with separate licenses to install MATLAB and Polyspace in
separate folders.

• Perform a setup step to link your Polyspace installation with your MATLAB installation.

See Integrate Polyspace with MATLAB and Simulink.

 Analysis Setup

5-13

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkmisrac2012misra3.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkseicertccertc.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkisoiects17961iso17961.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkisoiects17961iso17961.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkmisrac2008misracpp.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/checkseicertccertcpp.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html

polyspaceBugFinderNodesktop removed
Warns

Use polyspaceBugFinder(projectFile, '-nodesktop') instead of
polyspaceBugFinderNodesktop(projectFile).

BugFinderReportTemplate property values changed for coding standard compliance reports
Warns

A single report template is used for all coding standards (other than CWE).

To update your MATLAB code, use the new template CodingStandards for the property
BugFinderReportTemplate:
proj = polyspace.Project;
proj.Configuration.MergedReporting.BugFinderReportTemplate = 'CodingStandards';

instead of these old templates:

• CodingRules
• SecurityCERT
• SecurityISO_17961

See also Changes in Coding Standard Checking in R2019a.

Property CustomRulesSubset is removed
Errors

CodingRulesCodeMetrics property CustomRulesSubset is removed. Previously, you used this
property to specify the path to the file where you defined custom naming conventions to check
against. Use the new property CheckersSelectionByFile instead.

With the new property, you specify a file in .xml format where you define custom rules to match
identifiers in your code, and custom selections of checkers for all the coding standards that Polyspace
supports. See Set checkers by file (-checkers-selection-file).

To update your MATLAB code, see this table.

opts = polyspace.Project;

Property Use Instead
opts.CodingRulesCodeMetrics...
.EnableCustomRules=1;
opts.CodingRulesCodeMetrics...
.CustomRulesSubset='custom_rules.txt';

opts.CodingRulesCodeMetrics...
.EnableCustomRules=1;
opts.CodingRulesCodeMetrics...
.EnableCheckersSelectionByFile=1;
opts.CodingRulesCodeMetrics...
.CheckersSelectionByFile='custom_rules.xml';

For more information, see polyspace.Project.Configuration Properties.

Option values CERT-rules, CERT-all, and ISO-17961 are removed for BugFinderAnalysis
property CheckersPreset
Errors

CheckersPreset option values CERT-rules, CERT-all, and ISO-17961 are removed. Previously,
you used CheckersPreset with these options values to check your code for violations of the CERT C

R2019a

5-14

https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/setcheckersbyfilecheckersselectionfile.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/polyspace.options-properties.html

and ISO/IEC TS 17961 coding standards. Use the new CodingRulesCodeMetrics properties CertC
and EnableIso17961 instead.

The new CodingRulesCodeMetrics properties simplify checking for violations of coding standards
CERT C and ISO/IEC TS 17961.

To update your MATLAB code, see this table.

opts = polyspace.Project;

Property Use Instead
opts.BugFinderAnalysis...
.EnableCheckers=1;
opts.BugFinderAnalysis...
.CheckersPreset='CERT-all';

opts.CodingRulesCodeMetrics.EnableCertC=1;
opts.CodingRulesCodeMetrics.CertC='all';

opts.BugFinderAnalysis...
.EnableCheckers=1;
opts.BugFinderAnalysis...
.CheckersPreset='CERT-rules';

opts.CodingRulesCodeMetrics.EnableCertC=1;
opts.CodingRulesCodeMetrics.CertC='all-rules';

opts.BugFinderAnalysis...
.EnableCheckers=1;
opts.BugFinderAnalysis...
.CheckersPreset='iso-17961';

opts.CodingRulesCodeMetrics.EnableIso17961=1;
opts.CodingRulesCodeMetrics.Iso17961='all'

For more information, see polyspace.Project.Configuration Properties.

Option values CERT-rules, CERT-all, and ISO-17961 are removed for
CodingRulesCodeMetrics property MisraCSubset
Errors

MisraCSubset option values CERT-rules, CERT-all, and ISO-17961 are removed. Previously, you
used MisraCSubset with these options values to check your code for violations of the CERT C and
ISO/IEC TS 17961 coding standards. Use the new CodingRulesCodeMetrics properties CertC and
EnableIso17961 instead.

The new CodingRulesCodeMetrics properties simplify checking for violations of coding standards
CERT C and ISO/IEC TS 17961.

To update your MATLAB code, see this table.

opts = polyspace.Project;

Property Use Instead
opts.CodingRulesCodeMetrics...
.EnableMisraC3=1;
opts.CodingRulesCodeMetrics...
.MisraC3Subset='CERT-all';

opts.CodingRulesCodeMetrics.EnableCertC=1;
opts.CodingRulesCodeMetrics.CertC='all';

opts.CodingRulesCodeMetrics...
.EnableMisraC3=1;
opts.CodingRulesCodeMetrics...
.MisraC3Subset='CERT-rules';

opts.CodingRulesCodeMetrics.EnableCertC=1;
opts.CodingRulesCodeMetrics.CertC...
='all-rules';

 Analysis Setup

5-15

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/polyspace.options-properties.html

Property Use Instead
opts.CodingRulesCodeMetrics...
.EnableMisraC3=1;
opts.CodingRulesCodeMetrics...
.MisraC3Subset='iso-17961';

opts.CodingRulesCodeMetrics.EnableIso17961...
=1;
opts.CodingRulesCodeMetrics.Iso17961='all';

For more information, see polyspace.Project.Configuration Properties.

Option values CERT-rules and CERT-all are removed for CodingRulesCodeMetrics property
MisraCppSubset
Errors

MisraCppSubset option values CERT-rules and CERT-all are removed. Previously, you used
MisraCSubset with these options values to check your code for violations of the CERT C++ coding
standard. Use the new CodingRulesCodeMetrics property CertCpp instead.

The new CodingRulesCodeMetrics property simplifies checking for violations of the CERT C++
coding standard.

To update your MATLAB code, see this table.

opts = polyspace.Project;

Property Use Instead
opts.CodingRulesCodeMetrics...
.EnableMisraCpp=1;
opts.CodingRulesCodeMetrics...
.MisraC3Subset='CERT-all';

opts.CodingRulesCodeMetrics.EnableCertCpp...
=1;
opts.CodingRulesCodeMetrics.CertC='all';

opts.CodingRulesCodeMetrics...
.EnableMisraCpp=1;
opts.CodingRulesCodeMetrics...
.MisraC3Subset='CERT-rules';

For more information, see polyspace.Project.Configuration Properties.

R2019a

5-16

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/polyspace.options-properties.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/polyspace.options-properties.html

Analysis Results
AUTOSAR C++14 Support: Check for violations of rules from the
AUTOSAR C++14 coding standard
Summary: In R2019a, Bug Finder can detect violations of rules from the AUTOSAR C++14 coding
standard.

Bug Finder supports a significant number of AUTOSAR C++14 rules. See Supported AUTOSAR C+
+14 Rules.

Benefits: The AUTOSAR C++14 standard is an improved version of the earlier MISRA C++: 2008
standard and retains only a more relevant subset of MISRA C++: 2008 rules. The AUTOSAR C++14
standard also takes into account later C++ language versions such as C++14 and incorporates
elements from other coding standards such as CERT C++ and High Integrity C++ (HIC++). With
Bug Finder, you can directly check for violations of rules from the AUTOSAR C++14 standard.

Improved CERT C++ Support: Check for missing overloads, ambiguous
declaration syntax and other rules from CERT C++ Coding Standard
Summary: In R2019a, you can look for violations of these CERT C++ rules (in addition to previously
supported rules).

CERT C++ Rule Description Polyspace Checker
DCL52-CPP Never qualify a reference type

with const or volatile
CERT C++: DCL52-CPP

DCL53-CPP Do not write syntactically
ambiguous declarations (most
vexing parse)

CERT C++: DCL53-CPP

DCL54-CPP Overload allocation and
deallocation functions as a pair
in the same scope

CERT C++: DCL54-CPP

EXP58-CPP Pass an object of the correct
type to va_start

CERT C++: EXP58-CPP

EXP59-CPP Use offsetof() on valid types and
members

CERT C++: EXP59-CPP

See also CERT C++ Rules.

 Analysis Results

5-17

https://www.mathworks.com/help/releases/R2019a/bugfinder/autosar-c-14.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/autosar-c-14.html
https://wiki.sei.cmu.edu/confluence/x/jXw-BQ
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/certcdcl52cpp.html
https://wiki.sei.cmu.edu/confluence/x/DHw-BQ
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/certcdcl53cpp.html
https://wiki.sei.cmu.edu/confluence/x/KX0-BQ
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/certcdcl54cpp.html
https://wiki.sei.cmu.edu/confluence/x/X3s-BQ
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/certcexp58cpp.html
https://wiki.sei.cmu.edu/confluence/x/B3s-BQ
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/certcexp59cpp.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/cert-c-rules.html

Recursion Detection: See list of recursion cycles in C/C++ project
Summary: In R2019a, the code metrics Number of Recursions and Number of Direct
Recursions are displayed along with a list of recursion cycles in the project.

• For the metric Number of Direct Recursions, the list shows all direct recursions (self recursive
functions or functions calling themselves).

• For the metric Number of Recursions, the list shows all direct recursions plus a partial list of
indirect recursion cycles. For details, see Number of Recursions.

Benefits:

• Easier navigation to recursion cycles: Each row in the list shows one recursion cycle. You can click
a row to navigate to one of the functions involved in the recursion cycle.

• Checking metric computation: You can check the value of the code metrics Number of
Recursions and Number of Direct Recursions.

Compatibility Considerations
A slightly different algorithm is used to compute the number of recursions. You can see a different
value of this metric compared to previous releases. For computation details, see Number of
Recursions.

New Bug Finder Defect Checkers: Check for misplaced CV qualifiers, C
++ most vexing parse, ill-constructed variadic functions, and other
issues
Summary: In R2019a, you can look for these new types of defects.

Defect Description
C++ reference type qualified with
const or volatile

Reference type declared with a redundant const
or volatile qualifier

C++ reference to const-qualified type
with subsequent modification

Reference to const-qualified type is
subsequently modified

Ambiguous declaration syntax Declaration syntax can be interpreted as object
declaration or part of function declaration

Missing overload of allocation or
deallocation function

Only one function in an allocation-deallocation
function pair is overloaded

R2019a

5-18

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofdirectrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofdirectrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofdirectrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/creferencetypequalifiedwithconstorvolatile.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/creferencetypequalifiedwithconstorvolatile.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/creferencetoconstqualifiedtypewithsubsequentmodification.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/creferencetoconstqualifiedtypewithsubsequentmodification.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/ambiguousdeclarationsyntax.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/missingoverloadofallocationordeallocationfunction.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/missingoverloadofallocationordeallocationfunction.html

Defect Description
Incorrect type data passed to va_start Data type of second argument to va_start

macro leads to undefined behavior
Incorrect use of va_start va_start is called in a non-variadic function or

called with a second argument that is not the
rightmost parameter of a variadic function

Incorrect use of offsetof in C++ Incorrect arguments to offsetof macro causes
undefined behavior

Updated code metrics specifications
Summary: In R2019a, these code metric specifications have been updated.

Code Metric Update
Number of Function Parameters In cases where a C++ function returns an object,

you see a decrease in number of function
parameters.

Previously, the metric incorrectly included
additional parameters corresponding to
Polyspace internal variables.

Number of Recursions You can see a change in the number of recursions
in your project.

The algorithm to compute recursions is slightly
different from previous releases. The metric
reports the number of direct recursions plus the
number of strongly connected components
formed by the indirect recursion cycles.

The metric is also supported with events showing
the recursion cycles. For details, see the release
note about Recursion Detection.

Number of Paths You can see a high value of the metric in some
cases where the metric value was previously
reported as zero.

The number of paths increases exponentially with
the branching in the code. If the number of paths
exceeds an internal limit, the metric calculation
stops and reports the value
9223372036854775807 (indicating the
hexadecimal value 0x7fffffffffffffff). Previously, the
metric value was reported as zero in those cases.

 Analysis Results

5-19

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/incorrecttypedatapassedtova_start.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/incorrectuseofva_start.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/incorrectuseofoffsetofinc.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberoffunctionparameters.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofrecursions.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/numberofpaths.html

Code Metric Update
Code complexity metrics for C++ templates If you use C++ templates, you can see a

difference in the value of certain metrics.

Each instantiation of a C++ template is
considered as a separate function. Code
complexity metrics are reported separately for
each instantiation.

For instance, consider the function template
GetMax instantiated twice in main:

// function template
#include <iostream>
using namespace std;

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax<int>(i,j);
 n=GetMax<long>(l,m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

In R2019a, the two instantiations of GetMax are
considered as separate functions. All code
metrics are reported separately for the two
instantiations. Further, the number of called
functions in main is 2.

Previously, the two instantiations were
considered as one.

R2019a

5-20

Code Metric Update
Sizes of local variables You see a decrease in the metrics for a function if

a local variable is an instance of a C++ class that
inherits virtually from another class. Previously, a
Polyspace internal variable was used to keep
track of the virtual inheritance and the internal
variable was taken into account in the size
metrics. The calculation no longer considers the
internal variable.

For instance, consider this example:

class A { virtual void f(); };
class B : virtual A { };

Previously, the size of an object of type A was
shown as 8 and B as 16. Now both sizes are
calculated as 8.

Compatibility Considerations
If you compute these code metrics, you can see a difference in results compared to previous releases.

Updated Bug Finder defect checkers
Summary: In R2019a, these defect checkers have been updated.

Defect Description Update
Data race including
atomic operations

Operations on the same shared
variable in two tasks can
interrupt each other. All
operations on shared variables
including atomic operations are
considered as potentially
nonatomic.

The checker now considers
situations where the two tasks
have different priorities.

For instance, if an atomic
operation in a preemptable
interrupt reads or writes to the
same shared variable as an
operation in a nonpreemptable
interrupt, the checker can
detect this issue. See Define
Preemptable Interrupts and
Nonpreemptable Tasks.

Incorrect syntax of
flexible array member
size

Flexible array member defined
with size zero or one

The defect checker is disabled if
you run a Bug Finder analysis
on C90 code (using the option -
c-version c90). See C
standard version (-c-
version).

 Analysis Results

5-21

https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/define-preemptable-interrupts-and-nonpreemptable-tasks.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/define-preemptable-interrupts-and-nonpreemptable-tasks.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/define-preemptable-interrupts-and-nonpreemptable-tasks.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/incorrectsyntaxofflexiblearraymembersize.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/incorrectsyntaxofflexiblearraymembersize.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/incorrectsyntaxofflexiblearraymembersize.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2019a/bugfinder/ref/cstandardversioncversion.html

Compatibility Considerations
If you check for the defects mentioned above, you can see a difference in the number of issues found.

R2019a

5-22

Reviewing Results

Support for Security Standards: See CERT C, CERT C++ or ISO/IEC TS
17961 rule violations explicitly in Polyspace analysis results and
reports
Summary: In R2019a, if you check for violations of the CERT C, CERT C++ or ISO/IEC TS 17961
standard, the results list and reports show the rules violated as analysis results.

Benefits: You can directly see rules from the security standards in the Bug Finder analysis results
and security-specific reports. You can explicitly filter specific rules for a more focused review.
Previously, the Bug Finder analysis results contained defects mapped to rules from the standard. In
the list of results, you enabled a CERT ID or ISO-17961 ID column to see the CERT C or ISO/IEC TS
17961 rules corresponding to a defect.

Compatibility Considerations
In previous releases, to review a CERT C or ISO/IEC TS 17961 rule violation, you reviewed defects or
MISRA C: 2012 violations that are mapped to these security standards. Now, you can directly check
for these standards and review the rule violations.

See also Changes in Coding Standard Checking in R2019a.

 Reviewing Results

5-23

https://www.mathworks.com/help/releases/R2019a/bugfinder/ug/changes-in-coding-standard-workflow-in-r2019a.html

Bug Fix Suggestions: See possible fixes for types of defects found by
Bug Finder
Summary: In R2019a, you can navigate from a defect found with Bug Finder to suggested fixes for
the defect. To see these fix suggestions, click the icon in the details for the defect.

Benefits: You can implement one of the suggested fixes. You can also use the suggested fixes and
code examples for guidance and create your own fixes.

Source Code Navigation: Keep result pinned while navigating through
source code
Summary: In R2019a, clicking a result in the source code does not change the result selection on the
Results List and the details on the Result Details pane.

For instance, in this example, the result Assertion is selected on the Results List pane. The
corresponding source code (line 60) appears on the Source pane and further details about the result
on the Result Details pane. If you then navigate through the source code and select a token
highlighting another result (for instance, the = operator in line 77), the selection in the results list
and the details still show the Assertion result.

R2019a

5-24

Benefits: To find the root cause of a result, you have to navigate through the source code. You can
keep the result pinned on the Results List and Result Details pane during this navigation.

Compatibility Considerations
Previously, if you clicked a token in the source code showing a result, the selection on the Results
List pane and the information on the Result Details pane changed to the clicked result. To emulate

 Reviewing Results

5-25

this behavior, Ctrl-click the token in the source code or right-click and select Select Results At
This Location.

Report Generation: Generate Polyspace reports faster than previous
releases
Summary: In R2019a, Polyspace report generation uses a more optimized algorithm.

Benefits: You can now generate PDF, HTML or Microsoft Word reports from Polyspace results much
faster than before. For large reports, report generation can be more than ten times faster than
before.

Report Generation: Generate single file for HTML reports
Summary: In R2019a, if you generate an HTML report, a single HTML file is created.

Benefits: The single HTML file allows easier archiving. Previously, several companion files were
generated in HTML reporting. You had to archive all files together to be able to view the HTML
report.

Compatibility Considerations
The structure of the new HTML report is different from prior releases. If you used scripts to parse the
HTML reports, you might have to adapt the scripts to the new HTML structure.

R2019a

5-26

R2018b

Version: 2.6

New Features

Bug Fixes

Compatibility Considerations

6

Analysis Setup

Configuration from Build System: Automatically generate Polyspace
configuration modules from build system
Summary: In R2018b, you can create a separate Polyspace analysis module for each binary in your
build system.

Suppose a build system has the following dependencies and creates four binaries: the executables
foo.exe and bar.exe, and the dynamic libraries util.dll and gui.dll.

Previously, you created a single Polyspace options file from this build system. You can now create a
separate Polyspace options file for each binary created in your build system.

See also:

• Modularize Polyspace Analysis by Using Build Command
• polyspace-configure

Benefits:

• More precise analysis: You can perform a separate Polyspace analysis for each binary in your build
system. The analysis does not mix files from distinct binaries.

• Automated modularization: You can reuse the modularization in your build system to create the
Polyspace analysis modules.

• Focused analysis: You can analyze only specific modules instead of your entire codebase.
• Minimal knowledge of build system required: You do not need to know the details of your build

system. With a -module flag, a separate options file is created for each binary in your build
system. You can analyze only the code implementation of the binaries that you are interested in.

R2018b

6-2

https://www.mathworks.com/help/releases/R2018b/bugfinder/ug/modularize-polyspace-analysis-using-build-command.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/polyspaceconfigurecommand.html

C11 and C++14 Support: Run Polyspace analysis on code with C11 or
C++14 features
Summary: In R2018b, Polyspace can interpret the majority of C11 or C++14-specific features.

See also C/C++ Language Standard Used in Polyspace Analysis.

Benefits: You can now setup a Polyspace analysis for code containing C11 or C++14-specific
features. Previously, some features were not recognized and caused compilation errors.

Autodetection of Concurrency Primitives: Multitasking model detected
from C11 multithreading functions
Summary: In R2018b, if you use C11 functions for multitasking, the Polyspace analysis can interpret
them semantically.

Polyspace interprets the following functions:

• thrd_create: Thread is created.
• mtx_lock: Critical section begins.
• mtx_unlock: Critical section ends.

See also Auto-Detection of Thread Creation and Critical Section in Polyspace.

Benefits: You do not have to adapt your code or specify your multitasking model manually through
analysis options. The analysis determines your multitasking model from the functions in your code
and finds data races or other concurrency defects.

Compiler Support: Set up Polyspace analysis easily for code compiled
with Renesas compilers
Summary: If you build your source code with the Renesas compiler, in R2018b, you can specify the
compiler name for your Polyspace analysis. The analysis can interpret macros that are implicitly
defined by the compiler and compiler-specific language extensions such as keywords and pragmas.

You can specify these target processors directly: rl78, rh850, or rx. See Renesas Compiler (-
compiler renesas).

 Analysis Setup

6-3

https://www.mathworks.com/help/releases/R2018b/bugfinder/ug/cc-language-standard-used-in-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ug/autodetection-of-thread-creation.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/renesascompilercompilerrenesas.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/renesascompilercompilerrenesas.html

Benefits: You can now set up a Polyspace project without knowing the internal workings of the
Renesas compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Changes in analysis options and binaries
Polyspace Bug Finder has new Target & Compiler options
Behavior change

Polyspace Bug Finder has new Target & Compiler configuration options C standard version (-
c-version) and C++ standard version (-cpp-version).

Use these options to specify the C and C++ language standards you follow in your source code.

-compiler option has new value renesas
Behavior change

Compiler (-compiler) option has new value renesas. When you specify this option value, the
analysis can interpret macros that are implicitly defined by the Renesas compiler and compiler-
specific language extensions such as keywords and pragmas.

Target & Compiler options Respect C90 standard (-no-language-extensions) and C++11
extensions (-cpp11-extension) are removed
Warns

Options Respect C90 standard (-no-language-extensions) and C++11 extensions (-cpp11-
extension) are removed. Use options C standard version (-c-version) and C++ standard
version (-cpp-version) instead.

In the Polyspace user interface, if an option is replaced by another option, the replacement occurs
automatically in your configuration. To update your scripts, see this table.

Option Use Instead
Respect C90 standard (-no-language-
extensions)

Set the option C standard version (-c-
version) to c90.

C++11 extensions (-cpp11-extension) Set the option C++ standard version (-
cpp-version) to cpp11.

You get a warning when you use the removed options at the command line.

polyspace-configure option -lang is removed
Warns

Starting in R2018b, polyspace-configure detects the language of your source code.

Option -lang will be removed in a future release. You get a warning when you use this option and
there is no replacement. To update your code, remove instances of -lang.

-compiler option value clang3.5 is removed
Errors

Compiler (-compiler) option value clang3.5 is removed. Use clang3.x instead.

R2018b

6-4

https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/polyspaceconfigurecommand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/compilercompiler.html

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this table.

Option Use Instead
-compiler clang3.5 -compiler clang3.x

You get an error when you use the removed option at the command line.

Changes in MATLAB option object properties and option values
polyspace.Project.Configuration has new TargetCompiler properties
Behavior change

polyspace.Project.Configuration has new TargetCompiler properties CVersion and
CppVersion. Use these properties in your MATLAB code to specify the C and C++ language
standards you follow in your source code.

For more information, see Properties.

TargetCompiler property has a new Compiler option value renesas
Behavior change

TargetCompiler property has a new Compiler option value renesas. When you specify this option
value, the analysis can interpret macros that are implicitly defined by the Renesas compiler and
compiler-specific language extensions such as keywords and pragmas.

For more information, see Properties.

TargetCompiler properties NoLanguageExtensions and Cpp11Extension will be removed
Still runs

Properties NoLanguageExtensions and Cpp11Extension will be removed. Use CVersion and
CppVersion instead.

To update your MATLAB code, see this table.

opts = polyspace.Project;

Property Use Instead
opts.Configuration.TargetCompiler...
.NoLanguageExtensions = true;

opts.Configuration.TargetCompiler...
.CVersion = 'c90';

opts.Configuration.TargetCompiler...
.Cpp11Extension = true;

opts.Configuration.TargetCompiler...
.CppVersion = 'cpp11';

Unlike NoLanguageExtensions and Cpp11Extension which let you specify one version of the C
and C++ language standards, the new object properties CVersion and CppVersion let you specify
different versions of these standards.

For more information, see Properties.

polyspaceConfigure option -lang is removed
Warns

Starting in R2018b, polyspaceConfigure detects the language of your source code.

 Analysis Setup

6-5

https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/polyspace.project.configuration-properties.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/polyspace.project.configuration-properties.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/polyspace.project.configuration-properties.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/polyspaceconfigure.html

Option -lang will be removed in a future release. You get a warning when you use this option and
there is no replacement. To update your code, remove instances of -lang.

R2018b

6-6

Analysis Results

CERT C++ Support: Identify CERT C++ violations by using defect
checkers and coding rules
Summary: In R2018b, you can look for violations of these CERT C++ rules and CERT C rules that
apply to C++. For a list of all Polyspace results that correspond to CERT C++ violations, see CERT C
++ Coding Standard and Polyspace Results.

CERT C++ Rule Description Polyspace Checker
CON54-CPP Wrap functions that can

spuriously wake up in a loop
Function that can
spuriously wake up not
wrapped in loop

EXP57-CPP Do not cast or delete pointers to
incomplete classes

Conversion or deletion
of incomplete class
pointer

OOP58-CPP Copy operations must not
mutate the source object

Copy operation modifying
source operand

CON37-C Do not call signal() in a
multithreaded program

Signal call in
multithreaded program

CON40-C Do not refer to an atomic
variable twice in an expression

Atomic load and store
sequence not atomic

Atomic variable accessed
twice in an expression

CON41-C Wrap functions that can fail
spuriously in a loop

Function that can
spuriously fail not
wrapped in loop

EXP46-C Do not use a bitwise operator
with a Boolean-like operand

Possible invalid
operation on boolean
operand

FIO32-C Do not perform operations on
devices that are only
appropriate for files

Inappropriate I/O
operation on device
files

FLP36-C Preserve precision when
converting integral values to
floating-point type

Precision loss in
integer to float
conversion

INT30-C Ensure that unsigned integer
operations do not wrap

Unsigned integer
constant overflow

INT32-C Ensure that operations on
signed integers do not result in
overflow

Integer constant
overflow

 Analysis Results

6-7

https://www.mathworks.com/help/releases/R2018b/bugfinder/ug/cert-cpp-coding-standard-and-polyspace-results.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ug/cert-cpp-coding-standard-and-polyspace-results.html
https://wiki.sei.cmu.edu/confluence/x/cns-BQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslywakeupnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslywakeupnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslywakeupnotwrappedinloop.html
https://wiki.sei.cmu.edu/confluence/x/83s-BQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/conversionordeletionofincompleteclasspointer.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/conversionordeletionofincompleteclasspointer.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/conversionordeletionofincompleteclasspointer.html
https://wiki.sei.cmu.edu/confluence/x/gXs-BQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/copyoperationmodifyingsourceoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/copyoperationmodifyingsourceoperand.html
https://wiki.sei.cmu.edu/confluence/x/w9YxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/signalcallinmultithreadedprogram.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/signalcallinmultithreadedprogram.html
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicloadandstoresequencenotatomic.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicloadandstoresequencenotatomic.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicvariableaccessedtwiceinanexpression.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicvariableaccessedtwiceinanexpression.html
https://wiki.sei.cmu.edu/confluence/x/QNUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslyfailnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslyfailnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslyfailnotwrappedinloop.html
https://wiki.sei.cmu.edu/confluence/x/WNYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://wiki.sei.cmu.edu/confluence/x/19YxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/inappropriateiooperationondevicefiles.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/inappropriateiooperationondevicefiles.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/inappropriateiooperationondevicefiles.html
https://wiki.sei.cmu.edu/confluence/x/XdYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/precisionlossinintegertofloatconversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/precisionlossinintegertofloatconversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/precisionlossinintegertofloatconversion.html
https://wiki.sei.cmu.edu/confluence/x/bNYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/unsignedintegerconstantoverflow.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/unsignedintegerconstantoverflow.html
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerconstantoverflow.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerconstantoverflow.html

CERT C++ Rule Description Polyspace Checker
INT35-C Use correct integer precisions Integer precision

exceeded

Possible invalid
operation on boolean
operand

PRE31-C Avoid side effects in arguments
to unsafe macros

Side effect in arguments
to unsafe macro

STR37-C Arguments to character-
handling functions must be
representable as an unsigned
char

Misuse of sign-extended
character value

STR38-C Do not confuse narrow and wide
character strings and functions

Misuse of narrow or wide
character string

Improved CERT C Support: Check for precision loss, blocking
operations, and other rules from the CERT C Coding Standard
Summary: In R2018b, you can look for violations of these CERT C rules (in addition to previously
supported rules).

CERT C Rule Description Polyspace Checker
CON05-C Do not perform operations that

can block while holding a lock
Blocking operation while
holding lock

CON30-C Clean up thread-specific storage Thread-specific memory
leak

CON36-C Wrap functions that can
spuriously wake up in a loop

Function that can
spuriously wake up not
wrapped in loop

CON37-C Do not call signal() in a
multithreaded program

Signal call in
multithreaded program

CON40-C Do not refer to an atomic
variable twice in an expression

Atomic load and store
sequence not atomic

Atomic variable accessed
twice in an expression

CON41-C Wrap functions that can fail
spuriously in a loop

Function that can
spuriously fail not
wrapped in loop

DCL38-C Use the correct syntax when
declaring a flexible array
member

Incorrect syntax of
flexible array member
size

EXP46-C Do not use a bitwise operator
with a Boolean-like operand

Possible invalid
operation on boolean
operand

R2018b

6-8

https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerprecisionexceeded.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerprecisionexceeded.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://wiki.sei.cmu.edu/confluence/x/I9YxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/sideeffectinargumentstounsafemacro.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/sideeffectinargumentstounsafemacro.html
https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofnarroworwidecharacterstring.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofnarroworwidecharacterstring.html
https://wiki.sei.cmu.edu/confluence/x/bdUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/blockingoperationwhileholdinglock.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/blockingoperationwhileholdinglock.html
https://wiki.sei.cmu.edu/confluence/x/gtYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/threadspecificmemoryleak.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/threadspecificmemoryleak.html
https://wiki.sei.cmu.edu/confluence/x/RNUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslywakeupnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslywakeupnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslywakeupnotwrappedinloop.html
https://wiki.sei.cmu.edu/confluence/x/w9YxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/signalcallinmultithreadedprogram.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/signalcallinmultithreadedprogram.html
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicloadandstoresequencenotatomic.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicloadandstoresequencenotatomic.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicvariableaccessedtwiceinanexpression.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/atomicvariableaccessedtwiceinanexpression.html
https://wiki.sei.cmu.edu/confluence/x/QNUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslyfailnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslyfailnotwrappedinloop.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/functionthatcanspuriouslyfailnotwrappedinloop.html
https://wiki.sei.cmu.edu/confluence/x/GtcxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/incorrectsyntaxofflexiblearraymembersize.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/incorrectsyntaxofflexiblearraymembersize.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/incorrectsyntaxofflexiblearraymembersize.html
https://wiki.sei.cmu.edu/confluence/x/WNYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html

CERT C Rule Description Polyspace Checker
FIO32-C Do not perform operations on

devices that are only
appropriate for files

Inappropriate I/O
operation on device
files

FLP36-C Preserve precision when
converting integral values to
floating-point type

Precision loss from
integer to float
conversion

INT35-C Use correct integer precisions Integer precision
exceeded

Possible invalid
operation on boolean
operand

POS44-C Do not use signals to terminate
threads

Use of signal killing
thread

POS52-C Do not perform operations that
can block while holding a POSIX
lock

Blocking operation while
holding lock

PRE31-C Avoid side effects in arguments
to unsafe macros

Side effect in arguments
to unsafe macro

STR37-C Arguments to character-
handling functions must be
representable as an unsigned
char

Misuse of sign-extended
character value

STR38-C Do not confuse narrow and wide
character strings and functions

Misuse of narrow or wide
character string

See also Mapping Between CERT C Rules and Polyspace Results.

Constant Overflows: Check for overflows on integer constants
Summary: In R2018b, you can check for instances where a compile-time constant is assigned to a
variable whose data type cannot accommodate the value.

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

See Integer constant overflow and Unsigned integer constant overflow.

Benefits: Most compilers wrap around overflowing constants with a warning. However, if you want to
check for these instances, you can enable the constant overflow checkers in Bug Finder.

Updated Bug Finder defect checkers
Summary: In R2018b, these defect checkers have been updated.

 Analysis Results

6-9

https://wiki.sei.cmu.edu/confluence/x/19YxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/inappropriateiooperationondevicefiles.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/inappropriateiooperationondevicefiles.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/inappropriateiooperationondevicefiles.html
https://wiki.sei.cmu.edu/confluence/x/XdYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/precisionlossinintegertofloatconversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/precisionlossinintegertofloatconversion.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/precisionlossinintegertofloatconversion.html
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerprecisionexceeded.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerprecisionexceeded.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/possibleinvalidoperationonbooleanoperand.html
https://wiki.sei.cmu.edu/confluence/x/otUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/useofsignaltokillthread.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/useofsignaltokillthread.html
https://wiki.sei.cmu.edu/confluence/x/mdUxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/blockingoperationwhileholdinglock.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/blockingoperationwhileholdinglock.html
https://wiki.sei.cmu.edu/confluence/x/I9YxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/sideeffectinargumentstounsafemacro.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/sideeffectinargumentstounsafemacro.html
https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofnarroworwidecharacterstring.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofnarroworwidecharacterstring.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ug/cert-c-coding-standard-and-polyspace-results.html#bu57vix
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/integerconstantoverflow.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/unsignedintegerconstantoverflow.html

Defect Description Update
Write without a further
read

A variable is never read after
assignment

The checker now detects
redundant write operations on
global variables.

For instance, you perform two
write operations on a global
variable without an
intermediate read operation.
The first write operation is
redundant.

Misuse of sign-extended
character value

Data type conversion with sign
extension causes unexpected
behavior.

The checker now detects use of
sign-extended plain char
variables as argument to a
character-handling function.

For new Bug Finder checkers, see the release notes about CERT C and CERT C++ support.

Changes to coding rules checking
In R2018b, the following changes have been made in checking of previously supported MISRA C
rules.

Rule Description Improvement
MISRA C:2012 Rule 2.2 There shall be no dead code. The rule checker now flags

redundant write operations on
global variables.

For instance, you perform two
write operations on a global
variable without an
intermediate read operation.
The first write operation is
redundant.

MISRA C:2012 Rule 10.3 The value of an expression shall
not be assigned to an object
with a narrower essential type
or of a different essential type
category.

The checker now flags
assignments to a boolean
variable if the assigned value
has a non-boolean essential
type.

MISRA C++:2008 Rule
5-0-15

Array indexing shall be the only
form of pointer arithmetic.

The checker does not flag array
indexing on pointers that point
to array variables.

R2018b

6-10

https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/writewithoutafurtherread.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/writewithoutafurtherread.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misrac2012rule2.2.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misrac2012rule10.3.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misrac2008rule5015.html
https://www.mathworks.com/help/releases/R2018b/bugfinder/ref/misrac2008rule5015.html

Reviewing Results

Function Call Hierarchy: View call tree of functions in source code
Summary: In R2018b, you can view information about the call tree of functions in your source code

by opening the Call Hierarchy pane. To open this pane click the icon in the Result Details pane.

Benefits: For a function foo in your source code, you can see functions and tasks that call foo
(callers), and those called by foo (callees).

Header Files Access: Open your project header files directly from the
point of inclusion
Summary: In R2018b, you can open header files you reference in your code by right-clicking on the
include directive in the Source pane.

 Reviewing Results

6-11

If Polyspace determines that the header file is available, the #include, #import, or
#include_next preprocessor directive is underlined in the source code.

Benefits: When you review results, you can quickly see the contents of a header file without leaving
the Polyspace user interface.

R2018b

6-12

R2018a

Version: 2.5

New Features

Bug Fixes

Compatibility Considerations

7

Analysis Setup

AUTOSAR Support: Set up Polyspace multitasking configuration
automatically from an AUTOSAR description
Summary: In R2018a, Polyspace can parse your AUTOSAR specifications (.arxml files) to determine
your multitasking configuration.

This feature supports AUTOSAR XML schema for releases 4.0 and later.

For more information, see ARXML files selection (-autosar-multitasking).

Benefits:

• Automatic configuration: You do not need to specify your multitasking configuration manually.
Polyspace can determine the tasks, interrupts and critical sections from your AUTOSAR
specifications (specifically, the ECUC-CONTAINER-VALUE element).

• Minimal knowledge required for setup: You do not need to know the details of the AUTOSAR
specifications for configuring a Polyspace analysis. You simply provide the folder containing
your .arxml files.

MATLAB Coder Support: Run Polyspace on C/C++ code generated from
MATLAB code without additional setup
Summary: In R2018a, if you install Embedded Coder and Polyspace, you can run Polyspace directly
on C/C++ code generated from MATLAB code and check for defects (Bug Finder) or run time errors
(Code Prover).

R2018a

7-2

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/arxmlfilesselectionautosarmultitasking.html

For details, see:

• Run Polyspace on C/C++ Code Generated from MATLAB Code
• Configure Advanced Polyspace Options in MATLAB Coder App

Benefits:

• Seamless integration: You do not have to configure the Polyspace analysis manually, in the
Polyspace user interface or otherwise. The Polyspace analysis is seamlessly integrated with the
workflow in the MATLAB Coder™ App.

• Easier scripting: You do not have to know or specify names of files generated from your MATLAB
code. You can simply use a specific folder for code generation output and provide that folder for
code analysis. This way, you can have end-to-end scripting for the code generation and analysis.

Compiler Support: Set up Polyspace analysis easily for code compiled
with Texas Instruments, IAR or CodeWarrior compilers
Summary: If you build your source code using these compilers, in R2018a, you can specify the
compiler name for your Polyspace analysis:

• Texas Instruments™

You can specify these target processors: c28x, c6000, arm and msp430.

See Texas Instruments Compiler (-compiler ti) .
• IAR

You can specify these target processors: arm, avr, msp430, rh850 and rl78.

See IAR Embedded Workbench Compiler (-compiler iar-ew).
• CodeWarrior

You can specify these target processors: s12z or powerpc.

 Analysis Setup

7-3

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/verify-cc-code-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/configure-advanced-options-in-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/texasinstrumentscompilercompilerti.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/iarembeddedworkbenchcompilercompileriarew.html

See NXP CodeWarrior Compiler (-compiler codewarrior).

The analysis can interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

Benefits: You can now set up a Polyspace project without knowing the internal workings of these
compilers. If your code compiles with your compiler, it will compile with Polyspace in most cases
without requiring additional setup. Previously, you had to explicitly define macros that were implicitly
defined by the compiler and remove unknown language extensions from your preprocessed code.

Updated GCC and Clang Compiler Support: Set up Polyspace analysis
easily for code compiled with GCC versions 5.x or 6.x, or Clang version
3.x compilers
Summary: In R2018a, if you build your source code using these versions of GCC or Clang compilers,
you can specify the following compiler option values to setup your Polyspace analysis:

•

gnu5.x, for GCC release 5.1, 5.2, 5.3, and 5.4.
•

gnu6.x, for GCC release 6.1, 6.2, and 6.3.

Starting GCC version 5, the version number increases by one for each major release, for
instance,.from 5.x to 6.x. Polyspace follows this new naming convention.

•

clang3.x, for LLVM release 3.5, 3.6, 3.7, 3.8, and 3.9.

The analysis can interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

R2018a

7-4

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nxpcodewarriorcompilercompilercodewarrior.html

For more information, see Compiler (-compiler).

Configuration from Build System: Include or exclude sources when
generating Polyspace project using polyspace-configure
Summary: In R2018a, you can include or exclude source files or folders when generating a Polyspace
project from your build system.

To create a Polyspace project that does not contain all files from your build system:

1 Trace your build command. Do not create a project yet. Optionally store the build trace and
cache in specific locations (instead of the default).

polyspace-configure -no-project make -B \
 -build-trace trace.txt -cache-path /tmp/cache

2 Create a Polyspace project using the build trace and cache. Include or exclude files as needed
using shell GLOB patterns.

polyspace-configure -no-build \
 -build-trace trace.txt -cache-path /tmp/cache \
 -include-sources 'src/' -exclude-sources '*_test.c'

The preceding example includes sources in folder paths containing src and excludes .c files
ending with _test.

3 Delete the build trace and cache.

For more information, see polyspace-configure.

Benefits:

• Exclusion of irrelevant files: You can avoid cluttering your Polyspace project with files that you do
not want to analyze, for instance, files used for testing.

• Modular analysis: You can create a separate Polyspace project for each module covered by your
build system. Trace your build command once. When creating a Polyspace project, include only
files belonging to a specific module. Repeat the project creation step for each module.

Support for IBM Rational Rhapsody to be removed
The Polyspace integration with the IBM® Rational Rhapsody environment will be removed after
R2018b.

Compatibility Considerations
To continue using the latest releases of Polyspace, run code analysis in the Polyspace user interface
or using scripts.

Changes in analysis options and binaries
Polyspace Bug Finder has a new Multitasking option
Behavior change

 Analysis Setup

7-5

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/polyspace-configure-source-files-selection-syntax.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspaceconfigurecommand.html

Polyspace Bug Finder has a new Multitasking configuration option ARXML files selection (-
autosar-multitasking).

Use this option to automatically detect the multitasking configuration from your AUTOSAR
specification.

Polyspace Bug Finder has new -compiler option values
Behavior change

Use the new Compiler (-compiler) option values to interpret macros that are implicitly defined
by the compilers and compiler-specific language extensions such as keywords and pragmas..

Option New Value
Compiler (-compiler) • New value ti added.

See Compiler Support
release note.

• New value iar-ew
added. See Compiler
Support release note.

Use this value to
emulate IAR
compilers.

For older Polyspace
projects, you can still
use option value iar.

• New value
codewarrior added.
See Compiler Support
release note.

• New value gnu5.x
added. See Updated
GCC and Clang
Compiler Support
release note.

• New value gnu6.x
added. See Updated
GCC and Clang
Compiler Support
release note.

• New value clang3.x
added. See Updated
GCC and Clang
Compiler Support
release note.

-compiler option value clang3.5 is removed
Warns

Compiler (-compiler) option value clang3.5 is removed. Use clang3.x instead.

R2018a

7-6

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/arxmlfilesselectionautosarmultitasking.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/arxmlfilesselectionautosarmultitasking.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this table.

Option Use Instead
-compiler clang3.5 -compiler clang3.x

You get a warning when you use the removed option value at the command line.

-compiler option values iso, none, gnu, and visual through visual10 are removed
Errors

Compiler (-compiler) option values iso, none, gnu, visual, visual6, visual7.0,
visual7.1, visual8, and visual10 are removed.

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this table.

Option Use Instead
-compiler iso

-compiler none

-compiler generic

-compiler gnu -compiler gnu3.4
-compiler visual

-compiler visual6

-compiler visual7.0

-compiler visual7.1

-compiler visual8

-compiler visual10

-compiler visual10.0

You get a error when you use the removed options at the command line.

Target&Compiler options Set wchar_t to unsigned long (-wchar-t-is-unsigned-long) and Set
size_t to unsigned long (-size-t-is-unsigned-long) are removed
Errors

Option Set wchar_t to unsigned long (-wchar-t-is-unsigned-long) is removed. Set
Management of wchar_t (-wchar-t-type-is) to unsigned-long instead.

Option Set size_t to unsigned long (-size-t-is-unsigned-long) is removed. Set Management
of size_t (-size-t-type-is) to unsigned-long instead.

In the Polyspace user interface, if an option is replaced by another option, the replacement occurs
automatically in your configuration. To update your scripts, replace each instance of the removed
option with the corresponding new option.

You get an error when you use the removed options at the command line.

-enum-type-definition option value defined-by-standard is removed
Errors

 Analysis Setup

7-7

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/managementofwchar_twcharttypeis.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/managementofsize_tsizettypeis.html

Enum type definition (-enum-type-definition) option value defined-by-standard is removed.
Use defined-by-compiler instead.

In the Polyspace user interface, if an option value is replaced by another option value, the
replacement occurs automatically in your configuration. To update your scripts, see this table.

Option Use Instead
-enum-type-definition defined-by-
standard

-enum-type-definition defined-by-
compiler

You get an error when you use the removed option value at the command line.

Changes in MATLAB option object properties
polyspace.Project.Configuration has new Multitasking properties
Behavior change

polyspace.Project.Configuration has new Multitasking properties
EnableExternalMultitasking, ExternalMultitaskingType, and ArxmlMultitasking. Use
these properties to set up the multitasking configuration of your project from external files you
provide.

For more information, see Properties.

TargetCompiler property has a new Compiler option values
Behavior change

Use the new Compiler option values to interpret macros that are implicitly defined by the compilers
and compiler-specific language extensions such as keywords and pragmas.

opts=polyspace.Project;

R2018a

7-8

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/enumtypedefinitionenumtypedefinition.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3

Property Description
opts.Configuration...
.TargetCompiler.Compiler

• New value ti added. See Compiler Support
release note.

• New value iar-ew added. See Compiler
Support release note.

Use this value to emulate IAR compilers.

For older Polyspace projects, you can still use
property value iar.

• New value codewarrior added. See
Compiler Support release note.

• New value gnu5.x added. See Updated GCC
and Clang Compiler Support release note.

• New value gnu6.x added. See Updated GCC
and Clang Compiler Support release note.

• New value clang3.x added. See Updated
GCC and Clang Compiler Support release
note.

For more information, see Properties.

Multitasking property EnableOsekMultitasking is removed
Errors

Property EnableOsekMultitasking is removed. To update your MATLAB code, see this table.

opts=polyspace.Project;

Property Description
opts.Configuration.Multitasking...
.EnableOsekMultitasking

opts.Configuration.Multitasking...
.EnableExternalMultitasking=1;
opts.Configuration.Multitasking...
.ExternalMultitaskingType='osek';

If you use the removed property, you get an error.

For more information, see Properties.

TargetCompiler properties WcharTIsUnsignedLong and SizeTIsUnsignedLong are removed
Errors

Properties WcharTIsUnsignedLong and SizeTIsUnsignedLong are removed. To update your
MATLAB code, see this table.

opts=polyspace.Project;

Property Description
opts.Configuration.TargetCompiler...
.WcharTIsUnsignedLong

opts.Configuration.TargetCompiler...
.WcharTTypeIs="unsigned-long"

 Analysis Setup

7-9

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3

Property Description
opts.Configuration.TargetCompiler...
.SizeTIsUnsignedLong

opts.Configuration.TargetCompiler...
.SizeTTypeIs="unsigned-long"

If you use the removed property, you get an error.

For more information, see Properties.

EnumTypeDefinition option value defined-by-dialect is removed
Errors

EnumTypeDefinition option value defined-by-dialect is removed. To update your MATLAB
code, see this table.

opts=polyspace.Project;

Property Description
opts.Configuration.TargetCompiler...
.EnumTypeDefinition="defined-by-dialect"

opts.Configuration.TargetCompiler...
.EnumTypeDefinition="defined-by-compiler"

If you use the removed property, you get an error.

For more information, see Properties.

R2018a

7-10

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/polyspace.project.configuration-properties.html#bvnhyuf-3

Analysis Results

CERT C Support: Check for information leakage, invalid environment
pointers, and other rules from the CERT C Coding Standard
Summary: In R2018a, you can look for violations of these CERT C rules (in addition to previously
supported rules).

CERT C Rule Description Polyspace Checker
DCL39-C Avoid information leakage when

passing a structure across a
trust boundary

Information leak via
structure padding

ENV31-C Do not rely on an environment
pointer after following an
operation that may invalidate it

Environment pointer
invalidated by previous
operation

ERR32-C Do not rely on indeterminate
values of errno

Misuse of errno in a
signal handler

EXP35-C Do not modify objects with
temporary lifetime

Accessing object with
temporary lifetime

EXP44-C Do not rely on side effects in
operands to sizeof, _Alignof, or
_Generic

Side effect of
expression ignored

EXP47-C Do not call va_arg with
argument of the incorrect type

Incorrect data type
passed to va_arg

Too many va_arg calls
for current argument
list

FIO41-C Do not call getc(), putc(),
getwc(), or putwc() with a
stream argument that has side
effects

Stream argument with
possibly unintended side
effects

FLP37-C Do not use object
representations to compare
floating-point values

Memory comparison of
float-point values

MSC38-C Do not treat a predefined
identifier as an object if it might
only be implemented as a macro

Predefined macro used as
object

MSC40-C Do not violate constraints Inline constraint not
respected

PRE30-C Do not create a universal
character name through
concatenation

Universal character name
from token concatenation

PRE32-C Do not use preprocessor
directives in invocations of
function-like macros

Preprocessor directive
in macro argument

 Analysis Results

7-11

https://wiki.sei.cmu.edu/confluence/display/c/DCL39-C.+Avoid+information+leakage+when+passing+a+structure+across+a+trust+boundary
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/informationleakviastructurepadding.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/informationleakviastructurepadding.html
https://wiki.sei.cmu.edu/confluence/display/c/ENV31-C.+Do+not+rely+on+an+environment+pointer+following+an+operation+that+may+invalidate+it
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/environmentpointerinvalidatedbypreviousoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/environmentpointerinvalidatedbypreviousoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/environmentpointerinvalidatedbypreviousoperation.html
https://wiki.sei.cmu.edu/confluence/display/c/ERR32-C.+Do+not+rely+on+indeterminate+values+of+errno
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misuseoferrnoinasignalhandler.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misuseoferrnoinasignalhandler.html
https://wiki.sei.cmu.edu/confluence/display/c/EXP35-C.+Do+not+modify+objects+with+temporary+lifetime
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/accessingobjectwithtemporarylifetime.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/accessingobjectwithtemporarylifetime.html
https://wiki.sei.cmu.edu/confluence/display/c/EXP44-C.+Do+not+rely+on+side+effects+in+operands+to+sizeof%2C+_Alignof%2C+or+_Generic
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/sideeffectofexpressionignored.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/sideeffectofexpressionignored.html
https://wiki.sei.cmu.edu/confluence/display/c/EXP47-C.+Do+not+call+va_arg+with+an+argument+of+the+incorrect+type
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectdatatypepassedtova_arg.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectdatatypepassedtova_arg.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/toomanyva_argcallsforcurrentargumentlist.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/toomanyva_argcallsforcurrentargumentlist.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/toomanyva_argcallsforcurrentargumentlist.html
https://wiki.sei.cmu.edu/confluence/display/c/FIO41-C.+Do+not+call+getc%28%29%2C+putc%28%29%2C+getwc%28%29%2C+or+putwc%28%29+with+a+stream+argument+that+has+side+effects
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/streamargumentwithpossiblyunintendedsideeffects.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/streamargumentwithpossiblyunintendedsideeffects.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/streamargumentwithpossiblyunintendedsideeffects.html
https://wiki.sei.cmu.edu/confluence/display/c/FLP37-C.+Do+not+use+object+representations+to+compare+floating-point+values
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/memorycomparisonoffloatpointvalues.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/memorycomparisonoffloatpointvalues.html
https://wiki.sei.cmu.edu/confluence/display/c/MSC38-C.+Do+not+treat+a+predefined+identifier+as+an+object+if+it+might+only+be+implemented+as+a+macro
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/predefinedmacrousedasanobject.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/predefinedmacrousedasanobject.html
https://wiki.sei.cmu.edu/confluence/display/c/MSC40-C.+Do+not+violate+constraints
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/inlineconstraintnotrespected.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/inlineconstraintnotrespected.html
https://wiki.sei.cmu.edu/confluence/display/c/PRE30-C.+Do+not+create+a+universal+character+name+through+concatenation
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/universalcharacternamefromtokenconcatenation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/universalcharacternamefromtokenconcatenation.html
https://wiki.sei.cmu.edu/confluence/display/c/PRE32-C.+Do+not+use+preprocessor+directives+in+invocations+of+function-like+macros
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/preprocessordirectiveinmacroargument.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/preprocessordirectiveinmacroargument.html

See also Mapping Between CERT C Rules and Polyspace Results.

Cryptography Checkers: Check for security vulnerabilities such as
incorrect use of public key cryptography routines
Summary: In R2018a, using Bug Finder defects, you can identify incorrect use of public key
cryptography routines from the OpenSSL library.

The software detects the following issues with your use of cryptography routines.

Public key cryptography

Defect Issue Detected
Context initialized incorrectly for
cryptographic operation

Context used for cryptography operation is
initialized for a different operation. For instance,
you mix up encryption and decryption.

Incorrect key for cryptographic
algorithm

Cryptography operation is not supported by the
algorithm used in context initialization. For
instance, you use the DSA algorithm for
encryption.

Missing data for encryption,
decryption or signing operation

Data provided for cryptography operation is
NULL or data length is zero.

Missing parameters for key generation Context used for key generation is associated
with NULL parameters or not associated with
parameters at all.

Missing peer key Context used for shared secret derivation is
associated with a NULL peer key or not
associated with a peer key at all.

Missing private key Context used for cryptography operation is
associated with a NULL private key or not
associated with a private key at all.

Missing public key Context used for cryptography operation is
associated with a NULL public key or not
associated with a public key at all.

Nonsecure parameters for key
generation

Context used for key generation is associated
with weak parameters, for instance, insufficient
parameter length.

RSA algorithm specific

Defect Issue Detected
Incompatible padding for RSA algorithm
operation

Cryptography operation is not supported by the
padding type set in context.

Missing blinding for RSA algorithm Context used in decryption or signature
verification is not blinded against timing attacks.

Missing padding for RSA algorithm Context used in encryption or signing operation is
not associated with any padding.

R2018a

7-12

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/cert-c-coding-standard-and-polyspace-results.html#bu57vix
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyforcryptographicoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyforcryptographicoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectkeyforcryptographicalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incorrectkeyforcryptographicalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingdataforencryptiondecryptionorsigningoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingdataforencryptiondecryptionorsigningoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingpeerkey.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingprivatekey.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingpublickey.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecureparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecureparametersforkeygeneration.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incompatiblepaddingforrsaalgorithmoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/incompatiblepaddingforrsaalgorithmoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingblindingforrsaalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/missingpaddingforrsaalgorithm.html

Defect Issue Detected
Nonsecure RSA public exponent Context used in key generation is associated with

a low exponent value.
Weak padding for RSA algorithm Context used in encryption or signing operation is

associated with an insecure padding type.

Hash functions

Defect Issue Detected
Context initialized incorrectly for
digest operation

Context used for digest operation is initialized for
a different digest operation. For instance, you mix
up signing and signature verification.

Nonsecure hash algorithm Context used for message digest creation is
associated with a weak algorithm.

SSL/TLS connections

Defect Issue Detected
Nonsecure SSL/TLS protocol Context used for handling SSL/TLS connections is

not associated with a weak protocol.

MISRA C++ Support: Check for overriding of standard library
functions, missing const qualifiers, and other MISRA C++ rules
Summary: In R2018a, you can look for violations of these MISRA C++ rules (in addition to
previously supported rules).

Rule Description
0-1-3 A project shall not contain unused variables.
0-1-5 A project shall not contain unused type

declarations.
4-10-1 NULL shall not be used as an integer value.
4-10-2 Literal zero (0) shall not be used as the null-

pointer constant.
7-1-1 A variable which is not modified shall be const

qualified.
7-1-2 A pointer or reference parameter in a function

shall be declared as pointer to const or reference
to const if the corresponding object is not
modified.

9-3-3 If a member function cannot be made static then
it shall be made static, otherwise if it can be
made const then it shall be made const.

15-5-3 The terminate() function shall not be called
implicitly.

 Analysis Results

7-13

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecurersapublicexponent.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/weakpaddingforrsaalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyfordigestoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/contextinitializedincorrectlyfordigestoperation.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecurehashalgorithm.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/nonsecuressltlsprotocol.html

Rule Description
17-0-3 The names of standard library functions shall not

be overridden.

See also MISRA C++ Coding Rules.

MISRA C:2012 Directive 4.8: Detect opportunities for data hiding
Summary: In R2018a, you can look for violations of MISRA C:2012 Directive 4.8. The directive states
that if a pointer to a structure is never dereferenced in a translation unit, the implementation of the
structure must be hidden in that unit.

See MISRA C:2012 Directive 4.8.

Benefits: Using this checker, you can find opportunities for defining opaque data types that hide the
implementation of a structure.

Rule for Source Line Length: Constrain number of characters per line
in your code
Summary: In R2018a, you can define a limit for number of characters per line in your code and use
Polyspace to check for lines that fall outside that limit.

Use custom rule 20.1 and specify the character limit as the rule pattern. See Group 20: Style.

Improved Fast Analysis: Find some multi-file MISRA C violations in fast
analysis
Summary: In R2018a, if you run fast analysis, the analysis also looks for these MISRA C violations
that involve checking multiple files:

• MISRA C: 2004: Rules 8.8 and 8.9.
• MISRA C: 2012: Rules 8.5 and 8.6.

For more information, see Use fast analysis mode for Bug Finder.

Benefits: You detect more violations in the fast analysis mode. Previously, fast analysis looked only
for defects and coding rule violations that involved single files or functions.

R2018a

7-14

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/misra-c-coding-rules-1.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misrac2012directive4.8.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/group-10-function-templates.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misrac2012rule8.5.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/misrac2012rule8.6.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html

Reviewing Results

Concurrency Modeling: View all tasks and interrupts extracted from
code and Polyspace configuration in one view
Summary: In R2018a, you can see the tasks and interrupts extracted from your code and
configuration in one view.

After analysis, click the Concurrency modeling link on the Dashboard.

Benefits:

• Easy spot-check for concurrency modelling: You can verify if Polyspace correctly detected your
multitasking configuration from your code. For instance, if you know a priori that a specific
function acts as an interrupt, you can spot-check whether Polyspace considers the function as an
interrupt.

• Determination of priorities: The entry points in this view are grouped in the order of priorities:
interrupts, preemptable interrupts, non-preemptable tasks, (preemptable) tasks. To understand

 Reviewing Results

7-15

https://www.mathworks.com/help/releases/R2018a/bugfinder/ug/concurrency-modeling.html

why a data race does not occur between two entry points (Bug Finder), you can check if one of the
entry points has lower priority than the other. See Data race.

This information is also included in reports you generate from the analysis results.

Data Races: Distinguish write-write conflicts from more benign read-
write conflicts
Summary: In R2018a, you can choose to review only data races that come from conflicts between
two write operations.

The result details message for these data races have an additional line: Variable value may be
altered by write-write concurrent access. Use the Detail column filters on the Results
List pane to show only the data races that have this additional line.

See also Data race.

Benefits: Conflicts between two write operations in different threads can lead to corruption of
memory and indeterminate results. You can now distinguish these conflicts from more benign
conflicts between a write and read operation.

R2018a

7-16

https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/datarace.html

R2017b

Version: 2.4

New Features

Bug Fixes

Compatibility Considerations

8

Analysis Setup

Green Hills Compiler Support: Set up Polyspace analysis easily for
code compiled with Green Hills MULTI Compiler
Summary: If you build your source code with the Green Hills® MULTI compiler, in R2017b, you can
specify the compiler name for your Polyspace analysis. The analysis can interpret macros that are
implicitly defined by the compiler and compiler-specific language extensions such as keywords and
pragmas.

You can specify these target processors directly: arm64, arm, i386, x86_64, powerpc, powerpc64,
rh850 or tricore. See Green Hills Compiler (-compiler greenhills).

Benefits: You can now set up a Polyspace project without knowing the internal workings of your
MULTI compiler. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

OSEK Multitasking Support: Detect the multitasking configuration for
your OSEK application automatically
Summary: In R2017b, you can provide an OIL file that Polyspace parses to detect the multitasking
configuration for your OSEK application. Polyspace can interpret the OIL file definitions to set up
your concurrency model.

For more information, see OSEK multitasking configuration (-osek-multitasking).

R2017b

8-2

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/greenhillscompilercompilergreenhills.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/osekmultitaskingconfigurationosekmultitasking.html

Benefits: You no longer need to configure multitasking manually to analyze your OSEK application.
Polyspace detects the tasks, interrupts, and critical sections of your model.

Incremental Analysis in Eclipse: Detect bugs as you type and save
code in your Eclipse IDE
Summary: In R2017b, if you install the Polyspace plugin in your Eclipse IDE, the analysis runs each
time you save your code.

Benefits: You do not have to launch the Polyspace analysis explicitly. You can detect bugs during
coding.

Additional Considerations

• What types of bugs does the analysis look for?

The analysis looks for the defects that can be quickly detected. You get the same results as if you
had specified the option Use fast analysis mode for Bug Finder (-fast-analysis).

If you want to look for other kinds of defects, specify the defect checkers in your configuration and
launch the analysis explicitly. See Run Polyspace Analysis in Eclipse.

• Can I disable the automatic analysis?

You can enable or disable the automatic analysis. Select or clear Polyspace > Run Fast Analysis
on Save.

Polyspace API in MATLAB: Configure analysis, run analysis, and read
analysis results with a single MATLAB object
Summary: In R2017b, you can use a single MATLAB object for the entire Polyspace analysis. The
analysis has two subobjects, one for configuring analysis and another for reading results.

obj = polyspace.Project

% Configure analysis
obj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...

 Analysis Setup

8-3

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/run-polyspace-analysis-in-eclipse.html

 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
obj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
obj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = obj.run('bugFinder');

% Read results
bfSummary = obj.Results.getSummary();

For more information, see polyspace.Project.

Benefits: You need fewer variables for the Polyspace analysis. You can also use the same object for
reading both Bug Finder and Code Prover results.

Additional Considerations

Are the pre-R2017b ways of scripting a Polyspace analysis still supported?

The objects polyspace.Options, polyspace.BugFinderResults and
polyspace.CodeProverResults are still supported. For easier scripting, it is recommended that
you make these replacements:

• To configure analysis, instead of the polyspace.Options object, use the Configuration
subobject of the polyspace.Project object.

For instance, instead of:

opts = polyspace.Options

opts.ResultsDir = fullfile(pwd,'results');

Use:

obj = polyspace.Project

obj.Configuration.ResultsDir = fullfile(pwd,'results');

• To read results, instead of the polyspace.BugFinderResults and
polyspace.CodeProverResults objects, use the Results subobject of the
polyspace.Project object.

For instance, instead of:

resultsFolder = fullfile(pwd,'results');

opts = polyspace.Options;
opts.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
opts.ResultsDir = resultsFolder;

polyspaceBugFinder(opts);

resObj = polyspace.BugFinderResults(resultsFolder);
resSummary = resObj.getSummary();

Use:

R2017b

8-4

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/polyspace.project-class.html

resultsFolder = fullfile(pwd,'results');

obj = polyspace.Project;
obj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
obj.Configuration.ResultsDir = resultsFolder;

bfStatus = obj.run('bugFinder');

resSummary = obj.Results.getSummary ();

Compiler-Specific Keywords: Nonstandard compiler-specific keywords
are only supported when you specify compiler
Summary: In R2017b, compiler-specific keywords are enabled only when you specify a supporting
compiler. For instance, far is a keyword for certain compilers but not a keyword for others.

Benefits: When configuring your Polyspace project, it is sufficient to specify your compiler.
Previously, certain keywords were disabled irrespective of your compiler choice. If your compiler
supported those keywords, you had to explicitly enable them.

Compatibility Considerations
In existing projects that use the compiler option none (now generic), you can see compilation
errors. Previously, certain nonstandard keywords such as data were removed during preprocessing
because they were not relevant for the analysis. This syntax did not cause compilation errors.

data int tab[10];

Now, the nonstandard keywords are recognized based only on your choice of compiler. If you use a
generic compiler, the analysis does not recognize the nonstandard keywords as keywords and does
not remove them during preprocessing. For instance, the preceding syntax causes compilation errors.
For workarounds, see Errors Related to Generic Compiler.

POSIX and BSD Standards: Use functions from these standards
without additional setup
Summary: In R2017b, you can run analysis on code containing POSIX or BSD-specific functions
without additional setup, for instance, defining macros such as _POSIX_SOURCE. As an example, you
can analyze code that uses functions from unistd.h out of the box. You do not have to specify the
location of unistd.h or perform additional configuration.

Benefits: You can quickly run analysis on code that uses functions specific to POSIX or BSD. If you do
not provide the headers, Polyspace uses its own implementation of the functions for analysis.

Changes in analysis options and binaries
In R2017b, the following options have been added, changed, or removed.

 Analysis Setup

8-5

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/errors-related-to-generic-compiler.html

New Options

Option Description
OSEK multitasking configuration (-osek-multitasking) See OSEK Multitasking

Support release note.
-xml-annotations-description See Code Annotations

release note.
Compiler options:

• Management of size_t (-size-t-type-is)
• Management of wchar_t (-wchar-t-type-is)

Replaces previous
options related to
size_t and wchar_t.

R2017b

8-6

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/osekmultitaskingconfigurationosekmultitasking.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/xmlannotationsdescription.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofwchar_twcharttypeis.html

Updated Options

Option Change
Compiler (-compiler) • Option value none

changed to generic.
• New value

greenhills added.
See Green Hills
Compiler Support.

• Option value iso
removed. Use
generic instead.

• Option values
visual, visual6,
visual7.0,
visual7.1, visual8
and visual10
removed. Use
visual10.0 instead.

• Option value gnu
removed. Use gnu3.4
instead.

Target processor type (-target) Target powerpc64
added for Diab compiler.
See Diab Compiler (-
compiler diab).

Options related to packing of data structures:

• Ignore pragma pack directives (-ignore-pragma-pack)
• Pack alignment value (-pack-alignment-value)

Available for all
compilers.

Enum type definition (-enum-type-definition) Option value defined-
by-standard changed
to defined-by-
compiler.

Invalid use of floating point operation You can detect a
comparison to 0.0 when
you add the option -
detect-bad-float-
op-on-zero.

The defect is renamed in
the user interface to :
Floating point
comparison with
equality operators.
The command-line
parameter is still
BAD_FLOAT_OP.

 Analysis Setup

8-7

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/ignorepragmapackdirectivesignorepragmapack.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/packalignmentvaluepackalignmentvalue.html
https://www.mathworks.com/help/releases/R2017b/codeprover/ref/enumtypedefinitionenumtypedefinition.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/floatingpointcomparisonwithequalityoperators.html

Option Change
-asm-begin and -asm-end Available for all

compilers.

Removed Options

Option Status More Information
Management of 'for loop' index
scope (-for-loop-index-scope)

Warning Your choice of compilers determines the
specification of for loop index variables.

If you specify an older version of the Microsoft
Visual C++ compiler such as visual6,
visual7.0 or visual7.1, the analysis
considers that a for loop index is visible
outside the loop. Otherwise, the analysis
considers that the index is visible only inside
the for loop.

Set size_t to unsigned long (-
size-t-is-unsigned-long)

Warning Use the option Management of size_t (-size-
t-type-is).

-wchar-t-is-unsigned-long and
-wchar-t-is

Warning

-wchar-t-
is has been
removed
from the
user
interface
only.

Management of size_t (-size-t-type-
is)Use the option Management of wchar_t (-
wchar-t-type-is).

-static-headers-object Warning The permissive linking introduced by -
static-headers-object now happens by
default. The option is not required.

Compatibility Considerations
If you use scripts that contain the removed or updated options, update your scripts accordingly. In the
Polyspace user interface, if an option is replaced by another option, the replacement occurs
automatically in your configuration.

R2017b

8-8

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofsize_tsizettypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofwchar_twcharttypeis.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/managementofwchar_twcharttypeis.html

Analysis Results

Security Standards Support: Detect violations of all secure coding
guidelines from ISO/IEC Technical Specification 17961:2013 and more
guidelines from SEI CERT C Coding Standard
Summary: In R2017b, you can check your code against all the guidelines from the ISO/IEC TS
17961:2013 Standard, including guidelines for signal handlers and file manipulations. Polyspace Bug
Finder also covers additional CERT C coding defects.

Signal Handler Defect Checkers

Defect Issue Detected
Shared data access within signal
handler

You use a signal handler to access a shared object
that is neither of type volatile sig_atomic_t
nor a lock-free atomic object.

Signal call from within signal handler You call signal() from within an interruptible
signal handler.

Return from computational exception
signal handler

Your signal handler returns normally after a
computational exception signal SIGFPE, SIGILL,
or SIGSEGV.

Function called from signal handler
not asynchronous-safe

You use a signal handler to call a function that is
not asynchronous-safe per the POSIX standard.

Function called from signal handler
not asynchronous-safe (strict)

You use a signal handler to call a function that is
not asynchronous-safe per the C standard.

File and I/O manipulation Defect Checkers

Defect Issue Detected
Misuse of a FILE object You dereference a pointer to a FILE object or

manipulate the object through its pointer.
File descriptor exposure to child
process

You use the same file descriptor in multiple
processes.

Invalid file position You call fsetpos() with a file position that was
not returned from fgetpos().

Alternating input and output from a
stream without flush or positioning
call

You perform alternating read and write
operations on a stream without a flush or
positioning call.

Use of indeterminate string You do not reset the output buffer of fgets() or
fwgets() when they fail.

 Analysis Results

8-9

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/shareddataaccesswithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/shareddataaccesswithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/signalcallfromwithinsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/returnfromcomputationalexceptionsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/returnfromcomputationalexceptionsignalhandler.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafe.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafe.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafestrict.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/functioncalledfromsignalhandlernotasynchronoussafestrict.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misuseofafileobject.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/filedescriptorexposuretochildprocess.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/filedescriptorexposuretochildprocess.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/invalidfileposition.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alternatinginputandoutputfromastreamwithoutflushorpositioningcall.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alternatinginputandoutputfromastreamwithoutflushorpositioningcall.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alternatinginputandoutputfromastreamwithoutflushorpositioningcall.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/useofindeterminatestring.html

Memory and Pointer Manipulation Defect Checkers

Defect Issue Detected
Alignment changed after memory
reallocation

You change the memory allocation of an object to
a less strict alignment.

Mismatched alloc/dealloc functions on
Windows

In Windows, you deallocate memory with a
function that does not match the allocation
function.

Subtraction or comparison between
pointers to different arrays

You subtract or compare pointers to different
arrays, or null pointers.

Other Defect checkers

Defect Issue Detected
Missing byte reordering when
transfering data

You transfer data without matching the
endianness of the host and network.

Unsafe call to a system function You call system(), popen(), _popen(), or
_wopen().

Use of automatic variable as putenv-
family function argument

You use an automatic duration variable as the
argument of a putenv-family function.

Misuse of structure with flexible
array member

You do not allocate and copy a structure with a
flexible array member dynamically.

Call through non-prototyped function
pointer

You declare a pointer to a function with
unspecified parameters.

MISRA C:2012 Directive 1.1: Detect instances of implementation-
specific behavior in your code
Summary: In R2017b, you can detect possible violations of MISRA C:2012 Directive 1.1. The
directive requires that you understand and document any implementation-defined behavior that
affects the program output. See MISRA C:2012 Dir 1.1.

Benefits: The analysis detects constructs that can have implementation-defined behavior. If you have
such constructs in your code, you can find how your compiler implements them. Once you understand
and document all implementation-defined behavior, you can be assured that all output of your
program is intentional and not produced by chance.

Changes to coding rule checking
Updated Specifications

In R2017b, the following changes have been made in checking of previously supported MISRA C and
MISRA C ++ rules.

R2017b

8-10

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alignmentchangedaftermemoryreallocation.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/alignmentchangedaftermemoryreallocation.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/mismatchedallocdeallocfunctionsonwindows.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/mismatchedallocdeallocfunctionsonwindows.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/missingbytereorderingwhentransferringdata.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/missingbytereorderingwhentransferringdata.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/unsafecalltoasystemfunction.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/useofautomaticvariableasputenvfamilyfunctionargument.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/useofautomaticvariableasputenvfamilyfunctionargument.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misuseofstructurewithflexiblearraymember.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misuseofstructurewithflexiblearraymember.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/callthroughnonprototypedfunctionpointer.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/callthroughnonprototypedfunctionpointer.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/misrac2012dir1.1.html

Rule Description Improvement
MISRA C: 2004
Rule 17.4 and
MISRAC++ Rule
5-0-15

Array indexing shall be the
only allowed form of pointer
arithmetic.

The rule checker flags array indexing on nonarray
pointers. Previously, the checker flagged only
explicit pointer arithmetic on pointers.

MISRA C: 2012
Rule 18.2 and
MISRA C++
5-0-17

Subtraction between
pointers shall only be applied
to pointers that address
elements of the same array.

The rule checker flags more complex cases, such as
a subtraction between a pointer to a local array and
a pointer to a function argument. These additional
results correspond to defects flagged by the
checker Subtraction or comparison between
pointers to different arrays.

MISRA C:2004
Rule 8.9, MISRA
C:2012 Rule 8.6
and MISRA C++
Rule 3-2-4

An identifier with external
linkage shall have exactly
one external definition.

The rule checkers flag multiple definitions only if
the definitions occur in different files. The checkers
do not consider tentative definitions as definitions.

For instance, this code does not violate the rule:

int val;
int val=1;

 Analysis Results

8-11

https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/subtractionorcomparisonbetweenpointerstodifferentarrays.html

Reviewing Results

Result Review Workflow: Hide results that you reviewed once and
justified through source code annotations
Summary: In R2017b, if you justify a result through source code annotations, subsequent analyses
do not redisplay the result. The results do not appear in your results list or source code.

If you want to revisit those justified results, you can make them visible in one-click.

Benefits: When you decide not to fix a finding, you can justify it through source code annotations.
That finding does not clutter your subsequent analysis results.

Suppose the analysis flags an error-handling statement as dead code. You do not want to remove the
statement because future code can trigger the error and make the error-handling necessary. You can
justify the dead code and choose not to see it again.

Additional Considerations

• How can I use source code annotations to justify a result?

You can directly type source code annotations in the correct format. See Annotate and Hide
Known or Acceptable Results.

Alternatively, you can copy annotations from information in the user interface.

• In Eclipse, right-click the result to insert a justification directly in the source code.

R2017b

8-12

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html

• In Eclipse and the Polyspace user interface, assign one of the statuses Justified, No action
planned, or Not a defect to a result. Right-click the result to copy your justification and
paste it in a source code editor. See Annotate and Hide Known or Acceptable Results.

• Will the hidden results still appear in the report?

The hidden results still appear in the report. The results are hidden from view to save review
effort. The reports are meant for complete documentation of your results. You cannot hide analysis
results from the reports.

Code Annotations: Justify results or define your own format with a
new annotation format
Summary: In R2017b, you can justify your results with the new Polyspace annotation syntax, or by
using your own custom format. Polyspace also interprets existing code annotations that use a
different syntax.

Benefits:

• Easier results review: With the new annotation format, you can provide a justification for multiple
types of results on the same line. Previously, you had to enter the justification for different types of
results, such as defects and coding rules violations, on different lines.

• Custom annotation format: You can use an XML file to define any annotation format and map it to
the Polyspace syntax. When you analyze your code, Polyspace can interpret the annotations
regardless of the format.

Additional Considerations:

If you use the new annotation format and place your annotation on the line above the result you
annotate, the annotation is ignored.

To apply the annotation to the line of code below, add +1 after the polyspace keyword.

Polyspace still supports annotations that use the old syntax.

MISRA Comments and Code Annotations: Import your existing MISRA
C:2004 justifications to MISRA C:2012 results
Summary: In R2017b, when you check your code against MISRA C:2012 rules, Polyspace imports
existing justifications for MISRA C: 2004 violations.

 Reviewing Results

8-13

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-and-hide-known-or-acceptable-results.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ref/xmlannotationsdescription.html
https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/annotate-code-for-known-results.html

The analysis maps these justifications to the corresponding MISRA C: 2012 rules, if they exist.

For more information, see Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results.

Benefits: You can transition from MISRA C:2004 to MISRA C:2012 compliance. If you have already
justified a coding rule violation for MISRA C: 2004, you do not need to review the same result for the
corresponding MISRA C:2012 rule.

Results Review Workflow: Sort and filter results by subtype
Summary: In R2017b, you can group your results by subtype through the new Detail column in the
Results list pane. This column shows the first line from the Results Details pane, which has
additional information about a result.

For instance, multiple issues can trigger the same coding rule violation. The Detail column shows the
specific issue that triggered the rule violation.

R2017b

8-14

https://www.mathworks.com/help/releases/R2017b/bugfinder/ug/import-existing-misra-c-2004-justifications-to-misra-c-2012-results.html

Benefits: You can easily group edit statuses or comments for results of the same subtype. In the
Results List pane, group results by family, then within a result family use the Detail column to sort
and select a subset.

Constraint Specification: Navigate easily to the constraint
specification interface for Bug Finder results
Summary: In R2017b, you can open the Specified Constraints window when viewing Bug Finder
results. In this window, you can specify external constraints on global variables in your code.

To see the Specified Constraints window, with the Bug Finder results open, select Window > Show/
Hide View > Specified Constraints.

Benefits: If a global variable has a fixed value assigned in your code:

const int var = 1;

 Reviewing Results

8-15

but you want to analyze the code for multiple values of the variable, you can override the assignment
by using external constraints. For instance, if you see Dead code defects in your results from the
fixed value of a variable, you can navigate to the Specified Constraints window and specify a range
for the variable.

Result Status: Assign statuses that directly correspond to stages of
development workflow
Summary: In R2017b, you can assign these statuses to a result. Each status corresponds to a stage
in your code analysis workflow.

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Benefits: You can follow your review progress more easily.

Additional Considerations

• How can I use the statuses to follow my review progress?

You can follow your progress in the Polyspace user interface or the Polyspace Metrics web
interface.

• Polyspace user interface: You can filter all results that have a certain status.
• Polyspace Metrics: You can see the percentage of results reviewed and justified. If you assign a

status other than Unreviewed to a result, the software considers the result as reviewed. If you
assign one of these statuses, the software considers the result as justified: Justified, No
action planned, or Not a defect.

• Can I create my own status?

You can still create custom statuses. Select Tools > Preferences and create your own statuses on
the Review Statuses tab.

Compatibility Considerations
If you open results from a previous release, the statuses are updated to the new release. The updates
are:

• Fix or Investigate → To fix or To investigate
• Improve → To fix
• Undecided → Unreviewed.

If you open results from a previous release, the severity Not a defect is updated to Unset.

R2017b

8-16

If your source code annotations use statuses from a previous release, the software reads your
annotations using the updates. The software does not change the annotations themselves.

 Reviewing Results

8-17

R2017a

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

9

Analysis Setup
Unified User Interface: Create and maintain a single Polyspace project
for Bug Finder and Code Prover analysis
Summary: In R2017a, you can run Bug Finder and Code Prover analysis on the same Polyspace
project in the same user interface.

Benefits:

• Single entry point for two products: You launch the Polyspace user interface only once from one
icon on your desktop.

• Easier switching between products: After you run a Bug Finder analysis, you can switch to the
more rigorous Code Prover analysis in one click.

• One project, one configuration: Add source files and specify your analysis options only once. After
you set up your project, you can switch between the products without having to reconfigure.

Additional Considerations:

• What if I only want to run a Bug Finder analysis?

You have to set the options that apply to a Bug Finder analysis. Most options are common between
Bug Finder and Code Prover. So, you still have the benefit that most of your options will be set if
you ever switch to Code Prover.

The options specific to Bug Finder appear in the Bug Finder Analysis node, and the ones specific
to Code Prover in the Code Prover Verification node and the nodes underneath.

• If I run analysis in the two products, will the two sets of results appear together?

Yes, but not in the same view. The two sets of results appear under the same project, both in the
user interface and in the physical folder locations.

• In the user interface, in the Project Browser, the Bug Finder results appear with the icon
and the Code Prover results appear with the icon.

R2017a

9-2

• In your file explorer, you find the result folders for both analysis under one project folder.

However, after you run the two analyses, you have to open the two sets of analysis results
separately to review them. In the user interface, double-click one of the two result icons to open
the results corresponding to that product.

• Besides analysis options, are there other changes from pre-R2017a that I should be aware of?

If you were previously using only one of the two products, you will now notice the following
differences.

Bug Finder User:

• You can now create multiple modules in your Polyspace project to analyze separate
components of your source code.

When you create a project and add your source files, they are automatically added to the first
module. If you add source files later, you have to select them and using the right-click option
Copy to Module_n, copy them to the module that you want.

• You can now choose to create a new result folder for a second analysis on the same module.
Use the option Create new Bug Finder result folder from the Run button dropdown. Prior
to R2017a, there was one result folder for Bug Finder. If you ran a second analysis, it
overwrote the previous results. Note that the overwriting is still the default behavior.

• A new icon is used to denote defects.

Before R2017a:

R2017a:

Code Prover User:

 Analysis Setup

9-3

• If you run a second analysis on the same module, by default, it overwrites the previous results.
Prior to R2017a, a new result folder was created by default every time you ran an analysis.

You can change this default behavior and create a new result folder for the second analysis.
Use the option Create new Code Prover result folder from the Run button dropdown.

• If some of your files do not compile, the analysis continues with the remaining files. If a file
with compilation errors contains a function definition, the analysis considers the function as
undefined and uses a function stub instead. You can see which files did not compile on the
Output Summary pane and also in the report generated from the verification results.

Previously, the default analysis required that all of your files must compile. To revert to this
default behavior, use the option Stop analysis if a file does not compile (-stop-if-compile-
error).

• A new icon is used to denote definite run-time errors or red checks.

Before R2017a:

R2017a:

• I use DOS/UNIX®/MATLAB scripts to launch the analysis. How does this change affect me?

The change does not affect you directly. For instance, you still use two separate commands
polyspace-bug-finder-nodesktop and polyspace-code-prover-nodesktop to run
analysis from the DOS/UNIX command line. However, if you specify your options in a Polyspace
project in the user interface and then create a script from the project, you have to specify your
options only once for both products.

Once you specify your options in the Polyspace project, you can easily create a script for the
individual products. For instance, to create a Windows batch file that runs a Code Prover analysis,
run the command:

polyspace -generate-launching-script-for myproject.psprj

To create a Windows batch file that runs a Bug Finder analysis, run the command:

polyspace -bug-finder -generate-launching-script-for myproject.psprj

R2017a

9-4

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html

Easier Compliance with Security Standards: Choose CWE, CERT C99, or
ISO/IEC TS 17961 coding standard and address corresponding
violations through Polyspace results and security reports
Summary: In R2017a, you can provide a security standard such as CWE, CERT C99 or ISO/IEC TS
17961 for Polyspace analysis.

Analysis: The analysis runs defect and coding rule checkers that correspond to elements in the
standard.

Results: After analysis, you see the security standard ID-s corresponding to each result.

Report: When you generate a report, you can choose a template tailored for a specific security
standard. The report shows the security standard ID-s corresponding to each result.

 Analysis Setup

9-5

Benefits: You can easily adhere to a security standard using Polyspace analysis.

For details of the workflow, see Check Code for Security Standards.

Incremental Analysis of Specific Checks: Analyze only files edited
since previous analysis to quickly find new defects and coding rule
violations
Summary: In R2017a, you can run a fast analysis mode in Bug Finder. In this mode, if you perform
an analysis and then edit some files, a later analysis considers only the files that you edited.

Benefits: You wait less for analysis results from your second analysis onwards. During development,
you can frequently run analysis in fast mode and quickly check for new defects.

Additional considerations:

• Is the fast analysis mode different from a full Bug Finder analysis?

In fast analysis mode, Bug Finder checks for a subset of defects and coding rules only. In R2017a,
these defects and rules can be found within a single compilation unit, such as a single function or
file. The software does not perform interprocedural or cross-functional analysis.

• If I enable a defect checker that cannot be checked fast, what happens in the fast analysis mode?

The defect checker is internally disabled. When you switch back to full analysis, the defect
checker is enabled again. For information on:

• The defect checkers that can run fast, see Results Found by Fast Analysis.
• The option to enable fast analysis, see Use fast analysis mode for Bug Finder (-fast-

analysis).

R2017a

9-6

https://www.mathworks.com/help/releases/R2017a/bugfinder/ug/check-code-for-cwe-cert-c-and-other-standards.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ug/results-found-by-fast-analysis.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html

TASKING Compiler Support: Set up Polyspace analysis easily for code
compiled with Altium TASKING compiler
Summary: If you build your source code with the Altium® TASKING compiler, in R2017a, you can
specify the compiler name for your Polyspace analysis. The analysis can interpret macros that are
implicitly defined by the compiler and compiler-specific language extensions such as keywords and
pragmas.

You can specify the following target processors directly: tricore, c166, rh850 or arm. See
TASKING Compiler (-compiler tasking).

Benefits: You can now set up a Polyspace project without knowing the internal workings of your
TASKING compiler. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Updated Visual C++ Support: Set up Polyspace analysis easily for
code compiled with Microsoft Visual C++ 2015 compiler
Summary: If you build your source code with the Microsoft Visual C++ 2015 compiler, in R2017a,
you can specify the compiler name for your Polyspace analysis. The analysis can interpret macros that
are implicitly defined by the compiler and compiler-specific language extensions such as keywords
and pragmas.

For more information, see Compiler (-compiler).

Benefits:

• Easier compilation: You can now set up a Polyspace project without knowing the internal workings
of your Microsoft Visual C++ 2015 compiler.

• More precise analysis: The analysis provides precise results when you use compiler-specific
extensions.

 Analysis Setup

9-7

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/taskingcompilercompilertasking.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/compilercompiler.html

Autodetection of Concurrency Primitives: Multitasking model detected
from Windows, μC/OS II or C++11 multithreading functions
Summary: In R2017a, if you use the Windows, μC/OS II or C++11 functions for multitasking, the
Polyspace analysis can interpret them semantically.

Polyspace interprets the following functions:

Family Thread Created Critical Section Begins Critical Section Ends
Windows CreateThread EnterCriticalSection LeaveCriticalSection
μC/OS II OSTaskCreate OSMutexPend OSMutexPost
C++11 std::thread::thread std::mutex::lock std::mutex::unlock

Benefits: You do not have to adapt your code or specify your multitasking model manually through
analysis options. The analysis determines your multitasking model from the functions in your code
and finds data races or other concurrency defects.

Autodetection of Concurrency Primitives: Map Unsupported Thread
Creation Functions to Supported Functions
Summary: In R2017a, you can map your thread creation functions to thread-creation functions that
Polyspace can detect automatically. You can also perform the mapping for functions that begin and
end critical sections.

For instance, for the following code, you can map the functions createTask, takeLock and
releaseLock to the Pthreads functions, pthread_create, pthread_mutex_lock and
pthread_mutex_unlock respectively.

/* Assume global variables and functions are defined */

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

R2017a

9-8

Benefits: Polyspace supports automatic concurrency detection only for certain families of
concurrency primitives. You can extend the support to your family of concurrency functions by using
this mapping.

If Polyspace determines your multitasking model from your code, the analysis can find possible race
conditions and other defects, without additional setup efforts. Otherwise, you have to specify your
multitasking model explicitly through the manual multitasking options.

Additional considerations:

• How do I map an unsupported thread creation function to a supported function?

You specify the mapping in an XML file. You then provide the XML file as argument of the analysis
option -function-behavior-specifications.

For examples, see -function-behavior-specifications.
• How do I know which function to map to?

Map your function to the supported function that is most similar to your function in the number
and types of parameters.

For instance, in the above example, you can map the function createTask to the thread creation
functions pthread_create (POSIX®), CreateThread (Windows) or OSTaskCreate (μC/OS II).
However, the arguments of createTask align most closely with pthread_create.

For the list of supported functions that you can map to, see the sample mapping file function-
behavior-specifications-sample.xml in matlabroot\polyspace\verifier\cxx\.
matlabroot is the MATLAB installation folder, such as C:\Program Files\MATLAB\R2017a.

Manual Multitasking Setup: Specify routines that disable and reenable
all interrupts
Summary: In R2017a, when specifying your multitasking model for analysis, you can provide a
routine that disables all interrupts.

For instance, in the following code, the function disable_all_interrupts disables all interrupts
until the function enable_all_interrupts is called. Even if task, isr1 and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

 Analysis Setup

9-9

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/functionbehaviorspecifications.html

Benefits: If you protect operations on a shared variable by disabling interrupts, you can specify this
protection for the Polyspace analysis. The analysis uses this information to give you more precise
results for data race defects.

Additional considerations:

• Does the routine disable all preemption or preemption by only a certain class of interrupts?

The routine that you specify for the option disables preemption by all:

• Noncyclic entry points
• Cyclic tasks
• Interrupts

In other words, the analysis considers that the body of operations between the disabling routine
and the enabling routine is atomic and not interruptible at all.

• How are routines to disable interrupts different from protection via critical sections?

In the Polyspace multitasking model, to protect two sections of code from each other via critical
sections, you have to embed them in the same critical section. In other words, you have to place
the two sections between calls to the same lock and unlock function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the operation
x=1 in isr2. If the function begin_critical_section disabled all interrupts, calling it before
x++ would have been sufficient to protect it.

In this way, critical sections are conceptually different from routines to disable all interrupts.
Typically, you use one pair of routines in your code to disable and reenable interrupts, but you can
have many pairs of lock and unlock functions that implement critical sections.

R2017a

9-10

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/entrypointsentrypoints.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/cyclictaskscyclictasks.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/interruptsinterrupts.html

Specifying Function Names for Options: Choose from prepopulated list
in user interface instead of entering manually
Summary: In R2017a, for options that take function names, you can choose the names from a list.

For instance, to specify which functions act as entry points to your multitasking application, you can
choose the names from a list as follows:

Benefits: You do not have to enter the names manually. If the functions list is long, you can start
typing the function name to reduce the list.

Polyspace API in MATLAB: Create MATLAB objects from Polyspace
projects to run analysis
Summary: In R2017a, you can create a MATLAB object from a Polyspace project (.psrpj file). For
instance, if you have a file myProject.psprj in the current working folder, enter:

opts = polyspace.loadProject('myProject.psprj')

Use the object opts in MATLAB scripts to run a Polyspace analysis:

polyspaceBugFinder(opts);

 Analysis Setup

9-11

Benefits:

You can now consider the following workflows:

• Set options in GUI and script analysis: Use the Polyspace user interface to specify options in your
Polyspace project, or adjust options based on results from a trial run. After the options are stable,
create a MATLAB object opts from the project and store it in a MAT-file. As you move along in
your development cycle, simply load opts from your MAT-file, update opts.Sources to add new
source files, update other properties when required, and use opts to run analysis. For the object
properties, see polyspace.Options.

• Create project from your build command and script analysis: Use the function
polyspaceConfigure to create a .psrpj file from your build command (makefile). Create a
MATLAB object from that file to run analysis. In this way, you can use a MATLAB script for the
entire Polyspace analysis workflow beginning from your makefile.

Additional Considerations:

• A single Polyspace project works for both Bug Finder and Code Prover. Can I likewise use the
object to run both a Bug Finder and Code Prover analysis?

Yes, once you create the MATLAB object from a Polyspace project, you can use it with both
functions polyspaceBugFinder and polyspaceCodeProver.

• Can I create an object from a project that I have from a pre-R2017a version of Polyspace?

Yes, you can.

Support for 128-bit variables
Summary: In R2017a, Polyspace Bug Finder analysis supports 128-bit variables.

Benefits: 128-bit variables in your code do not cause compilation errors. For instance, if you use the
GCC type __int128, you can run Polyspace Bug Finder on your code.

Improvement in automatic project creation from build systems
Summary: In R2017a, by default, automatic project creation will throw an error if a project with the
same name exists in the output folder.

If you encounter an error, avoid the name conflict: change the project name, output folder, or remove
your older project.

Benefits: You cannot overwrite existing projects by accident. If you use scripts that are intended to
overwrite existing projects, use the additional option -allow-overwrite.

Changes in analysis options and binaries
In R2017a, the following options have been added, changed, or removed.

R2017a

9-12

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.options-properties.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspaceconfigure.html

New Options

Option Description
Use fast analysis mode for Bug Finder
(-fast-analysis)

Run analysis using faster local mode of Bug Finder.

See Incremental Analysis of Select Checks on page 9-6.
Disabling all interrupts (-
routine-disable-interrupts -
routine-enable-interrupts)

Specify routines that disable and reenable interrupts.

See Manual Multitasking Setup on page 9-9.

 Analysis Setup

9-13

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/usefastanalysismodeforbugfinderfastanalysis.html

Updated Options

Option Change More Information
Report template Renamed in

user
interface

New name: Bug Finder report

The command-line name is still -report-
template.

Batch Renamed in
user
interface

New name: Run Bug Finder analysis on a
remote cluster

The option is now in the Run Settings node in
your project configuration.

The command-line name is still -batch.
Add to results repository Renamed in

user
interface

New name: Upload results to Polyspace
Metrics

The option is now in the Run Settings node in
your project configuration.

The command-line name is still -add-to-
results-repository.

Compiler (-compiler) New values
added

You can specify the following arguments:

• tasking

See TASKING Compiler Support on page 9-
7.

• visual14.0

See Microsoft Visual C++ Support on page
9-7.

Find defects (-checkers) New value
added

You can specify the following arguments:

• CWE
• CERT-rules
• CERT-all
• ISO-17961

See Security Standards Checking on page 9-5.
Check MISRA C:2012 (-misra3) New value

added
You can specify the following arguments:

• CERT-rules
• CERT-all
• ISO-17961

See Security Standards Checking on page 9-5.

R2017a

9-14

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/finddefectscheckers.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/checkmisrac2012misra3.html

Removed Options

Option Status Description
Disable automatic concurrency
detection (-disable-
concurrency-detection)

Removed Option will be removed in a future release.

Detecting concurrency primitives
automatically saves time in setup and does not
impact performance. The option is not
required anymore.

Import Folder (-import-dir) Warning Option will be removed in a future release.
-easy-setup-preprocess Error Option will be removed in a future release.
gui-api Error Binary will be removed in a future release.

Use instead, polyspace-comments-import.
polyspace-automatic-
verification

Error Binary will be removed in a future release.

polyspace-remote Error Binary will be removed in a future release.
polyspace-verifier Error Binary will be removed in a future release.
rte-kernel Error Binary will be removed in a future release.
Dialect (-dialect) Error Option will be removed in a future release.

Use Compiler (-compiler) (Polyspace Code
Prover) instead.

Target operating system (-OS-
target)

Error Option will be removed in a future release.

If you use this option in scripts, see the list
below for replacements:

• Linux: If you get compilation errors, use
Compiler (-compiler) (Polyspace Code
Prover) gnux.x.

Sometimes, you might also have to set
Preprocessor definitions (-D) (Polyspace
Code Prover) to linux, unix, or
__linux__.

• Visual: Use Compiler (-compiler)
(Polyspace Code Prover) visualx.x

• Vxworks: Use the VxWorks® configured
template.

For more information, see Create Project
Using Configuration Template (Polyspace
Code Prover).

• Solaris: Remove -OS-target.
• no-predefined-OS: Remove -OS-

target.

 Analysis Setup

9-15

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html

Option Status Description
Files and folders to ignore (-
includes-to-ignore)

Removed Use the option Do not generate results for (-
do-not-generate-results-for) to
suppress results from headers and sources in
certain files or folders.

-support-FX-option-results Removed

Compatibility Considerations
If you use scripts that contain the removed or updated options, change your scripts accordingly.

Changes in MATLAB option object properties
These classes will be removed in a future release.

• polyspace.BugFinderOptions: To customize Polyspace analysis of handwritten code, use
polyspace.Options instead.

• polyspace.ModelLinkBugFinderOptions: To customize Polyspace analysis of generated code,
use polyspace.ModelLinkOptions instead.

The properties and methods of the new classes are almost the same as the original classes. If
optsOld is an object of the original class and optsNew is an object of the new class, the following
properties have changed.

Reporting
Removed Use instead
optsOld.Reporting.
EnableReportGeneration

optsNew.MergedReporting.
EnableReportGeneration

optsOld.Reporting.ReportTemplate optsNew.MergedReporting.
BugFinderReportTemplate

optsOld.Reporting. ReportOutputFormat optsNew.MergedReporting.
ReportOutputFormat

ComputingSettings
Removed Use instead
optsOld.ComputingSettings.Batch optsNew.MergedComputingSettings.

BatchBugFinder
optsOld.ComputingSettings.
AddToResultsRepository

optsNew.MergedComputingSettings.
AddToResultsRepositoryBugFinder

Compatibility Considerations
Replace instances of the old class names in your MATLAB scripts with the new class names. Then,
replace the properties accordingly.

Even if you continue to use the old class names, you must change the properties, as described above.

R2017a

9-16

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.bugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.options-class.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.modellinkbugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.modellinkoptions-class.html

Change in temporary folder location
In R2017a, Polyspace looks for standard environment variables such as TMPDIR to store temporary
files during an analysis. Previously, Polyspace used the folders /tmp or C:\Temp during analysis.

You can also store Polyspace temporary files in a folder different from the standard temporary folders.
To learn how Polyspace determines the temporary folder location, see Storage of Temporary Files.

Compatibility Considerations
If your analysis seems slower than before, check if the new temporary folder is on a network drive.
For faster analysis, use a folder on a local drive instead.

 Analysis Setup

9-17

https://www.mathworks.com/help/releases/R2017a/bugfinder/ug/storage-of-temporary-files.html

Analysis Results

Additional Defect Checkers for Security: Check for security
vulnerabilities such as incorrect use of cryptographic routines
Summary: In R2017a, Polyspace Bug Finder introduces new defect checkers for preventing security
vulnerabilities in your code. The most notable are the cryptography defect checkers.

Cryptography Defect Checkers

Using Polyspace Bug Finder defects, you can identify incorrect use of the EVP cipher routines from
the OpenSSL library.

The following issues are detected using the cryptography defects.

Initialization Vector

Defect Issue Detected
Constant block cipher
initialization vector

You used a constant for the initialization vector.

Predictable block cipher
initialization vector

You used a weak random number generator for the initialization
vector.

Missing block cipher
initialization vector

You forgot to associate a non-null initialization vector with the
cipher context.

Key

Defect Issue Detected
Constant cipher key You used a constant for the encryption or decryption key.
Predictable cipher key You used a weak random number generator for the encryption or

decryption key.
Missing cipher key You forgot to associate a non-null encryption or decryption key

with the cipher context.

Wrong Order of Operations

Defect Issue Detected
Inconsistent cipher
operations

You perform a decryption on the same context as an encryption
and immediately following it, or vice versa.

Missing cipher data to
process

Before performing a final step, you do not perform update steps
for encrypting or decrypting the data.

Missing cipher final step You do not perform a final step after update steps for encrypting
or decrypting data.

Algorithms and Modes

R2017a

9-18

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/constantblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/constantblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictableblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictableblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingblockcipherinitializationvector.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/constantcipherkey.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/predictablecipherkey.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherkey.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/inconsistentcipheroperations.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/inconsistentcipheroperations.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherdatatoprocess.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherdatatoprocess.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/missingcipherfinalstep.html

Defect Issue Detected
Weak cipher algorithm You associated a weak encryption algorithm with the cipher

context.
Weak cipher mode You associated a weak mode with the cipher context.

Defect Checkers for errno Usage

Defect Issue Detected
Errno not checked You call a function that sets errno to indicate error conditions,

but do not follow the function call with a check on errno to see if
the error occurred.

Errno not reset You call a function that sets errno but do not reset errno prior
to the call.

Misuse of errno You check errno for error conditions following calls to functions
that do not necessarily set errno to indicate error conditions or
sets other error indicators.

Defect Checkers for Type Conversions

Defect Issue Detected
Misuse of sign-extended
character value

You perform a data type conversion with sign extension and use
the resulting sign-extended character value as array index or for
comparison with EOF.

Character value absorbed
into EOF

You perform a data type conversion that can convert a character
value that is not EOF into EOF, and then compare the result with
EOF.

Defect Checkers for Memory Comparisons

Defect Issue Detected
Memory comparison of
padding data

You use memcmp to compare two structures and in the process,
compare garbage data stored in the structure padding.

Memory comparison of
strings

You use memcmp to compare two strings and in the process,
compare garbage data stored after the null terminator.

Other Defect Checkers

Defect Issue Detected
Misuse of return value
from nonreentrant
standard function

You use the pointer to a static buffer from a nonreentrant
standard function despite a subsequent call to the same function.

Misuse of readlink() You pass a buffer size argument to readlink() that does not
leave space for a null terminator in the buffer.

 Analysis Results

9-19

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/weakcipheralgorithm.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/weakciphermode.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/errnonotchecked.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/errnonotreset.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseoferrno.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofsignextendedcharactervalue.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/charactervalueabsorbedintoeof.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/charactervalueabsorbedintoeof.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofpaddingdata.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofpaddingdata.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofstrings.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/memorycomparisonofstrings.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreturnvaluefromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreturnvaluefromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreturnvaluefromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misuseofreadlink.html

MISRA Amendment Support: Check your code for new security
guidelines in MISRA C:2012 Amendment 1
Summary: In R2017a, you can check for violations of the additional security guidelines introduced in
MISRA C:2012 Amendment 1.

Rule Description
MISRA C:2012 Directive
4.14

The validity of values received from external sources shall be
checked.

MISRA C:2012 Rule 12.5 The sizeof operator shall not have an operand which is a
function parameter declared as "array of type".

MISRA C:2012 Rule 21.13 Any value passed to a function in <ctype.h> shall be
representable as an unsigned char or be the value EOF.

MISRA C:2012 Rule 21.14 The Standard Library function memcmp shall not be used to
compare null terminated strings.

MISRA C:2012 Rule 21.15 The pointer arguments to the Standard Library functions memcpy,
memmove and memcmp shall be pointers to qualified or unqualified
versions of compatible types.

MISRA C:2012 Rule 21.16 The pointer arguments to the Standard Library function memcmp
shall point to either a pointer type, an essentially signed type, an
essentially unsigned type, an essentially Boolean type or an
essentially enum type.

MISRA C:2012 Rule 21.17 Use of the string handling function from <string.h> shall not
result in accesses beyond the bounds of the objects referenced by
their pointer parameters.

MISRA C:2012 Rule 21.18 The size_t argument passed to any function in <string.h>
shall have an appropriate value.

MISRA C:2012 Rule 21.19 The pointers returned by the Standard Library functions
localeconv, getenv, setlocale or strerror shall only be
used as if they have pointer to const-qualified type.

MISRA C:2012 Rule 21.20 The pointer returned by the Standard Library functions asctime,
ctime, gmtime, localtime, localeconv, getenv, setlocale
or strerror shall not be used following a subsequent call to the
same function.

MISRA C:2012 Rule 22.7 The macro EOF shall only be compared with the unmodified
return value from any Standard Library function capable of
returning EOF.

MISRA C:2012 Rule 22.8 The value of errno shall be set to zero prior to a call to an
errno-setting function.

MISRA C:2012 Rule 22.9 The value of errno shall be tested against zero after calling an
errno-setting function.

MISRA C:2012 Rule 22.10 The value of errno shall only be tested when the last function to
be called was an errno-setting function.

R2017a

9-20

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012directive4.14.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012directive4.14.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule12.5.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.13.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.14.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.15.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.16.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.17.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.18.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.19.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule21.20.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.7.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.8.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.9.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule22.10.html

New Code Metrics: See number of lines in header files and number of
local variables per function
Summary: In R2017a, Polyspace can provide the following new code complexity metrics:

• Number of lines and number of lines without comments in header files
• Number of local non-static variables for every function and method
• Number of static variables for every function and method

Benefits: You can determine the memory footprints of your code using these new metrics (along with
other already existing metrics).

Changes to coding rule checking
New Rules Supported

In R2017a, the following new rules are supported:

• Additional security guidelines in MISRA C: 2012 Amendment 1.

See MISRA Amendment Support on page 9-20.
• MISRA C:2012 Directive 4.7 (partially supported): If a function returns error information,

then that error information shall be tested.

Updated Specifications

In R2017a, the following changes have been made in checking of previously supported MISRA
C rules.

Rule Rule Improvement
MISRA C: 2004
Rule 5.1

Identifiers (internal and
external) shall not rely on the
significance of more than 31
characters.

The rule checker shows all identifiers that have the
same first 31 characters as one rule violation.
Previously, every pair of identifiers with same 31
characters was shown as a separate violation.

For instance, in the following code snippet, the rule
violation appears only once.

extern int
 engine_exhaust_gas_temperature_raw;
static int
 engine_exhaust_gas_temperature_scaled;
static int
 engine_exhaust_gas_temperature_cutoff;

Previously, the violation was shown three times.

You have to review only one rule violation for every
group of identifiers with the same 31 characters.
You can still see all instances of conflicting
identifier names in the event history of that rule
violation.

 Analysis Results

9-21

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/numberoflines.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/numberoflineswithoutcomment.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/numberoflocalnonstaticvariables.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/numberoflocalstaticvariables.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012directive4.7.html

Rule Rule Improvement
MISRA C:2012
Rule 8.5

An external object or
function shall be declared
once in one and only one file.

The rule checker considers that variables or
functions declared extern in a non-header file
violates this rule.

R2017a

9-22

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule8.5.html
https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/misrac2012rule8.5.html

Reviewing Results

Folder Names in Results: Filter or organize analysis results by source
folder names
Summary: In R2017a, the source folder name is shown in the list of analysis results.

Benefits: You can order your results by folders or filter results belonging to specific folders. Using
custom filters, you can filter out subfolders of a folder in one click.

Code to Model Traceability: Switch easily between identifiers in
generated code and corresponding blocks in model
Summary: In R2017a, you can trace an instance of a variable in generated code back to your model.

 Reviewing Results

9-23

The model shows the corresponding block highlighted in blue. If the block is in a subsystem, both the
subsystem and the block are highlighted in blue.

Benefits:

• More convenient navigation: Previously, you traced back from code to model via links in code
comments. You can now navigate from the code operations themselves.

R2017a

9-24

• More fine-grained navigation: You can easily identify which block in your model leads to which
operation in the generated code.

Polyspace API in MATLAB: Read Polyspace analysis results from
MATLAB
Summary: You can read your Polyspace analysis results into a MATLAB table. For instance, if the
folder C:\MyResults contains results of a Polyspace analysis, enter the following:

resObj = polyspace.BugFinderResults('C:\MyResults')
resSummary = getSummary(resObj)
resTable = getResults(resObj)

resSummary and resTable are two MATLAB tables containing summary and details of the
Polyspace results.

See also polyspace.BugFinderResults.

Benefits: You can use the capabilities of MATLAB to obtain graphs and statistics about your
Polyspace results.

Double Lock and Other Concurrency Defects: Get help investigating
the defects using detailed control flow information
Summary: In R2017a, you can see detailed control flow information for concurrency defects such as
deadlock and double lock.

For instance, in the following traceback for a double lock defect, you see this information:

• Entry and exit from a function f19
• Entry or non-entry into if conditions.

You can click each event to navigate to the corresponding location in your source code.

 Reviewing Results

9-25

https://www.mathworks.com/help/releases/R2017a/bugfinder/ref/polyspace.bugfinderresults-class.html

Benefits: To fix concurrency defects, you often have to decide where to place lock and unlock
functions (functions that begin and end critical sections). Using the improved traceback, you can
decide the placements more easily.

Spreadsheet of Checkers: Use spreadsheet to keep track of checkers
that you enable
Summary: In R2017a, the software provides a spreadsheet containing the Polyspace Bug Finder
defect and coding rule checkers. The spreadsheet also maps the defects to standards such as CWE,
CERT-C or ISO-17961.

The spreadsheet is in matlabroot\polyspace\resources. Here, matlabroot is the MATLAB
installation folder, such as C:\Program Files\MATLAB\R2017a.

Benefits: You can use this spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers.

R2017a

9-26

R2016b

Version: 2.2

New Features

Bug Fixes

Compatibility Considerations

10

Analysis Setup

Diab Compiler Support: Set up Polyspace analysis easily for code
compiled with Wind River Diab compiler
If you build your source code with the Wind River® Diab compiler, in R2016b, you can easily set up a
Polyspace project to verify your code. After you specify the Diab compiler and your target processor,
the verification:

• Implicitly defines macros that are defined for the Diab compiler. Previously, you defined the
macros in your Polyspace project explicitly to avoid compilation errors.

• Understands language extensions such as keywords and pragmas that are specific to the Diab
compiler. Previously, you removed unknown language extensions explicitly from the preprocessed
code in your Polyspace project to avoid compilation errors.

You can now set up a Polyspace project manually without knowing the internal workings of your Diab
compiler. Specify the Diab compiler and your target processor, and run an analysis without facing
compilation errors. See Diab Compiler (-compiler diab).

The software supports version 5.9 and older versions of the Diab compiler.

Multitasking Code Analysis Setup: Specify cyclic tasks and
nonpreemptable interrupts directly as analysis options
In R2016b, you can specify which entry points in your code represent cyclic tasks and
nonpreemptable interrupts. Previously, to emulate the cyclic behavior of a task, you embedded
instructions in a loop. To emulate a nonpreemptable interrupt, you specified temporally exclusive
pairs where the interrupt was paired with the other interrupts.

For more information, see Cyclic tasks (-cyclic-tasks) and Interrupts (-interrupts).

Improved source and include folder management
Before R2016b, when you created a project, you added and removed source files and include folders
individually. If you moved your source files or added new files to your programming project, you re-
added the files into your Polyspace project.

Starting in R2016b, you create Polyspace projects with root source folders and include folders. The
root folder location represents the top of the hierarchy for your source files. Polyspace shows all files
relative to the root source locations. When you add a root source location, you can:

• See all source files under the root folder (and subfolders)
• Exclude files and subfolders in the hierarchy to change the active list of source files to analyze.
• Refresh the source file list to see new files or folders in the root source hierarchy.
• Modify the root source folder path.
• If you use a revision control system, change the root folder location to point to different versions

of your source files.

R2016b

10-2

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/cyclictaskscyclictasks.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/interruptsinterrupts.html

For include folders, instead of adding individual folders, you add a root include folder location.
Polyspace adds all include folders underneath the root include location that contains include files. You
can refresh and modify the include folder path.

For more information, see Update Project.

Writable Examples: Modify example projects and restore original
versions
The examples projects under Help > Examples are now easier to use. The first time that you open
an example project, a writable version is saved in your Polyspace_Workspace. In the writable
project, you can test configuration options, change sources, and rerun the example. If you want to
refresh the example with a clean version, select Help > Examples > Restore Default Examples.

Run analysis on .psprj file from the command line
If you already have a project created in the Polyspace Interface, you can now use that .psprj file to
run your analysis from a command line.

DOS or UNIX Command Line

Use the new option polyspace-bug-finder -generate-launching-script-for <PSPRJ
FILE> to generate the files to run the analysis from the command line. These files are generated:

• source_command.txt — List of source files in the project
• options_command.txt — List of analysis option settings
• launchingCommand.sh or launchingCommand.bat — Script that runs the analysis using

options_command.txt, source_command.txt, and .polyspace_conf.psprj. The script can
also take additional analysis options as parameters.

For more information, see Create Command-Line Script from Project File.

MATLAB Command Prompt

At the MATLAB command prompt, you can now give a .bf.psprj file as an argument to
polyspaceBugFinder.

The syntax polyspaceBugFinder(PSPRJ file,'-nodesktop') runs an analysis using the files
and options from the PSPRJ file.

Support for local threads
Starting in R2016b, Polyspace adds support for these local thread modifiers:

• __thread — requires Compiler (-compiler) gnu4.8
• __declspec(thread) — requires Compiler (-compiler) visual
• thread_local — only for C++ code.

This support may eliminate compilation errors or false Data race results.

 Analysis Setup

10-3

https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/update-project.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/generatelaunchingscriptfor.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/create-command-line-script-from-project-file.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspacebugfinder.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html

Polyspace API in MATLAB: Configure and run Polyspace using MATLAB
objects
Polyspace scripting from the MATLAB command line is now easier and more MATLAB-friendly.
R2016b introduces a set of classes, methods, and function improvements to help you run Polyspace
from the MATLAB command line. For more information and examples, see the linked reference pages.

Classes

Name Description
polyspace.BugFinderOptions An options object with properties that map to the Polyspace

environment configuration options. Use this object to customize
analysis options and run analysis.

https://www.mathworks.com/help/
releases/R2016b/bugfinder/ref/
polyspace.modellinkbugfinderoptions-
class.htmlpolyspace.
ModelLinkBugFinderOptions

Another version of the BugFinderOptions object with properties
specifically for model generated code. Use this object to customize
analysis options and run analysis.

polyspace.GenericTargetOptions A helper object for the BugFinderOptions classes. Use this object to
customize a generic target.

polyspace.DefectsOptions A helper object for the BugFinderOptions classes. Use this object to
customize the list of defects checked during the analysis.

polyspace.CodingRulesOptions A helper object for the BugFinderOptions object. Use this object to
customize the list of coding rules checked during the analysis.

Methods

Name Description
polyspace.Options.copyTo Copy settings between options objects. You can use this method to

copy options from a BugFinderOptions object to a
CodeProverOptions object and vice versa.

polyspace.Options.generateProj
ect

Generate a .psprj file from an options object to open in the
Polyspace interface.

Functions

Name Description
polyspaceBugFinder Run an analysis using BugFinderOptions objects or .psprj files.

Configuration Parameters Help: View descriptions of Polyspace
options in Simulink configuration parameters
When you use the Simulink plugin, you must set Simulink configuration parameters to run your
analysis. If you need help setting the configuration parameters, you can now right-click a
configuration parameter and get What’s This help. When you select What’s This, a help window
opens with details about the different settings and limitations of the parameter.

R2016b

10-4

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.bugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.modellinkbugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.modellinkbugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.modellinkbugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.modellinkbugfinderoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.generictargetoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.defectsoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.codingrulesoptions-class.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.options.copyto.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.options.generateproject.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspace.options.generateproject.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/polyspacebugfinder.html

Eclipse Build Support: Set up Polyspace analysis from Eclipse build
command
In R2016b, if you use a build command to build your source code in Eclipse or an IDE based on
Eclipse, you can easily set up your Polyspace verification. To obtain the compiler options for the
analysis, trace the build command inside the IDE. For more information, see Customize Analysis
Options.

Visual Studio 2010 add-in support to be removed from installation
In a future release, the Polyspace add-in for Visual Studio 2010 will no longer be included with the
installation.

To run Polyspace on code from Visual Studio, use the automatic configuration tool instead. See Create
Project Using Visual Studio Information.

If you still want to use the add-in, you will be able to download the add-in from MATLAB Answers.

Support for Rhapsody 8.1
The Polyspace plugin for IBM Rational® Rhapsody® supports Rhapsody 8.1. For more information, see
Find Defects from IBM Rational Rhapsody.

DOS Mode Warning on Linux: Compilation warning for DOS
inconsistencies
When using Polyspace on Linux, a new compilation warning may appear. On Windows, DOS is case-
insensitive meaning you cannot have two files with the same name but different capitalization. If you
select the option Code from DOS or Windows file system (-dos), Polyspace simulates this DOS
behavior on Linux. If your source files include header files with inconsistent capitalization and it is
unclear which file should be included, Polyspace issues a compilation warning.

For example, consider these two situations:

 Include Statements Include Files
Situation 1 #include "myheader.h"

#include "MYHEADER.h"
#include "MyHeader.h"

myheader.h

Situation 2 #include "myheader.h"
#include "MYHEADER.h"
#include "MyHeader.h"

myheader.h
MYHEADER.h

In the first situation, only one file exists with the name myheader.h. Because these include
statements can only refer to one file, there is no ambiguity about which file to include. No warning is
issued.

In the second situation, two files exist: myheader.h and MyHeader.h. Because they have the same
name and different capitalization, the capitalization in the include statement affects which file is
included. Polyspace can find perfect matches for the first and second include statements. The last
include statement is not a perfect match, so could refer to either header file. Because there is

 Analysis Setup

10-5

https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/customize-analysis-options.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/customize-analysis-options.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/gs/analyze-code-in-ibm-rational-rhapsody-environment.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/codefromdosorwindowsfilesystemdos.html

ambiguity with the last include statement, Polyspace issues this compilation warning: warning:
could not find include file "MyHeader.h".

In a future release, this compilation warning will become a compilation error.

Faster Restart for Remote Verification: Reuse compilation results from
a previous analysis
In R2016b, if a remote analysis stops after compilation, for instance because of communication
problems between the server and client computers, you do not have to restart the analysis from the
beginning. You can reuse compilation results from the previous failed analysis.

For more information, see -submit-job-from-previous-compilation-results.

Changes in Target & Compiler analysis options
In R2016b, these Target & Compiler options have been added, changed, or removed.

Option Change More Information
Compiler (-compiler) New option
Dialect (-dialect) Removed from

the user
interface.

If you use the
option in your
scripts, you see
a warning.

Option will be permanently removed in a future release.

Replace -dialect with -compiler while retaining the
option argument. In the user interface, this replacement
is done automatically for existing projects.

If you use the Wind River Diab compiler to build your
source code, use the option Compiler (-compiler) with
argument diab.

Target processor type (-
target)

Updated for the
Wind River Diab
compiler.

In the user interface, if you select diab for Compiler (-
compiler), you see target processors that are tailored to
the Diab compiler. For the processor specifications, see
the contextual help.

R2016b

10-6

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/submitjobfrompreviouscompilationresults.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html

Option Change More Information
Target operating
system (-OS-target)

Removed from
the user
interface.

If you use the
option in your
scripts, you see
a warning.

Option will be permanently removed in a future release.

Remove the option from your scripts. For some option
arguments, you might have to perform these additional
steps:

• Linux: If you get compilation errors, use a gnux.x
argument for Compiler (-compiler).

Sometimes, you might have to explicitly define
operating-system-specific macros such as linux,
unix, or __linux__. See Preprocessor definitions (-
D).

• Visual: Use a visualx.x argument for Compiler (-
compiler).

• Vxworks: Use the options from the VxWorks
templates.

Create a Polyspace project using one of the VxWorks
templates and generate a script from your project.
Copy the options related to the VxWorks template
from this script. For more information, see Create
Project Using Configuration Templateand the
reference page for -generate-launching-
scripts-for.

• Solaris: Just remove the option -OS-target.
• no-predefined-OS: Just remove the option -OS-

target.

Changes in analysis options and binaries
In R2016b, the following options have been added, changed, or removed.

For Target & Compiler options, see “Changes in Target & Compiler analysis options” on page 10-6.
For other options, see here.

New Options

Option Description
Cyclic tasks (-cyclic-tasks) Specify functions that represent cyclic tasks.
Interrupts (-interrupts) Specify functions that represent nonpreemptable interrupts.
-preemptable-interrupts Specify functions that represent preemptable interrupts.
-non-preemptable-tasks Specify functions that represent nonpreemptable tasks.

 Analysis Setup

10-7

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/cyclictaskscyclictasks.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/interruptsinterrupts.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/preemptableinterrupts.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/nonpreemptabletasks.html

Updated Options

Option Change More Information
Coding rule subsets single-unit-
rules and system-decidable-
rules

Subsets now
available
from the
drop-down
list.

These subsets are available for Check MISRA
C:2004 (-misra2), Check MISRA AC AGC (-
misra-ac-agc), and Check MISRA C:2012 (-
misra3)

Removed Options

Option Status Description
Import Folder (-import-dir) Warning Option will be removed in a future release.
-easy-setup-preprocess Warning Option will be removed in a future release.
polyspace-automatic-
verification

Warning Binary will be removed in a future release.

polyspace-verifier Warning Binary will be removed in a future release.
rte-kernel Warning Binary will be removed in a future release.
polyspace-remote Warning Binary will be removed in a future release.
gui-api Warning Binary will be removed in a future release.

Use instead, polyspace-comments-import.
Files and folders to ignore (-
includes-to-ignore)

Error Use the option Do not generate results for (-
do-not-generate-results-for) to
suppress results from headers and sources in
certain files or folders.

-support-FX-option-results Error Option will be removed in a future release.
polyspace-vcproj Removed Use polyspace-configure or the Polyspace

Add-In for Visual Studio instead.

Compatibility Considerations
If you use scripts that contain the removed or updated options, change your scripts accordingly.

R2016b

10-8

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/checkmisrac2004misra2.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/checkmisrac2004misra2.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/checkmisraacagcmisraacagc.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/checkmisraacagcmisraacagc.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/checkmisrac2012misra3.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/checkmisrac2012misra3.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html

Analysis Results

CERT C Support: Identify CERT C violations using defect checkers and
coding rules
In R2016b, you can comply with more CERT C Coding Standard rules using Polyspace defects and
coding rules.

For more information, see Mapping Between CERT C Standards and Polyspace Results. The new
defects added in R2016b specifically for CERT C support are listed here.

Concurrency

Name Description CERT C Rule
Data race through standard
library function call

Certain standard library functions
are called from multiple tasks
without protection

CON33-C: Avoid race conditions
when using library functions

Destruction of locked mutex A task is trying to destroy a locked
mutex that has not yet been
unlocked

CON31-C: Do not destroy a mutex
while it is locked

Good Practice

Name Description CERT C Rule
Bitwise and arithmetic
operation on the same data

Code statement with mixed bitwise
and arithmetic operations

INT14-C: Avoid performing
arithmetic and bitwise operations
on the same data

Missing reset of a freed
pointer

Pointer free not followed by a reset
statement to clear leftover data

MEM01-C: Store a new value in
pointers immediately after free()

Missing break of switch
case

No comments at the end of switch
case without a break statement

MSC17-C: Finish every set of
statements associated with a case
label with a break statement

Hard-coded object size used
to manipulate memory

Memory manipulation uses hard-
coded size instead of sizeof

EXP09-C: Use sizeof to determine
the size of a type or variable

Numerical

Name Description CERT C Rule
Use of plain char type for
numerical value

Plain char variable used in
arithmetic operation without
explicit signedness

INT07-C: Use only explicitly signed
or unsigned char type for numeric
values

Bitwise operation on
negative value

Undefined behavior for bitwise
operations on signed values

INT13-C: Use bitwise operations
only on unsigned operands

 Analysis Results

10-9

https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/mapping-between-cert-cc-standards-and-defects.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/dataracethroughstandardlibraryfunctioncall.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/dataracethroughstandardlibraryfunctioncall.html
https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/destructionoflockedmutex.html
https://wiki.sei.cmu.edu/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked
https://wiki.sei.cmu.edu/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/bitwiseandarithmeticoperationonthesamedata.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/bitwiseandarithmeticoperationonthesamedata.html
https://www.securecoding.cert.org/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://www.securecoding.cert.org/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://www.securecoding.cert.org/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/missingresetofafreedpointer.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/missingresetofafreedpointer.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=87152148
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=87152148
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/missingbreakofswitchcase.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/missingbreakofswitchcase.html
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/hardcodedobjectsizeusedtomanipulatememory.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/hardcodedobjectsizeusedtomanipulatememory.html
https://www.securecoding.cert.org/confluence/display/c/EXP09-C.+Use+sizeof+to+determine+the+size+of+a+type+or+variable
https://www.securecoding.cert.org/confluence/display/c/EXP09-C.+Use+sizeof+to+determine+the+size+of+a+type+or+variable
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/useofplainchartypefornumericalvalue.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/useofplainchartypefornumericalvalue.html
https://www.securecoding.cert.org/confluence/display/c/INT07-C.+Use+only+explicitly+signed+or+unsigned+char+type+for+numeric+values
https://www.securecoding.cert.org/confluence/display/c/INT07-C.+Use+only+explicitly+signed+or+unsigned+char+type+for+numeric+values
https://www.securecoding.cert.org/confluence/display/c/INT07-C.+Use+only+explicitly+signed+or+unsigned+char+type+for+numeric+values
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/bitwiseoperationonnegativevalue.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/bitwiseoperationonnegativevalue.html
https://www.securecoding.cert.org/confluence/display/c/INT13-C.+Use+bitwise+operators+only+on+unsigned+operands
https://www.securecoding.cert.org/confluence/display/c/INT13-C.+Use+bitwise+operators+only+on+unsigned+operands

Programming

Name Description CERT C Rule
Unsafe conversion from
string to numerical value

String to number conversion
without validation checks

ERR34-C: Detect errors when
converting a string to a number

Abnormal termination of
exit handler

Exit handler function terminates
incorrectly

ENV32-C: All exit handlers must
return normally

Unsafe conversion between
pointer and integer

Misaligned or invalid results from
conversions between pointer and
integer types

INT36-C: Unsafe conversion
between pointer and integer

Resources

Name Description CERT C Rule
Opening previously opened
resource

Opening an already opened file FIO24-C: Do not open a file that is
already open

Security

Name Description CERT C Rule
Returned value of a
sensitive function not
checked

Calls to sensitive or critical
functions should be checked for
unexpected return values and
errors

EXP12-C: Do not ignore values
returned by functions

ERR33-C: Detect and handle
standard library errors

Bad order of dropping
privileges

Dropped user or primary group
privileges before dropping primary/
supplementary group privileges

POS36-C: Observe correct
revocation order while dropping
privileges

Privilege drop not verified Verify privilege relinquishment POS37-C: Ensure that privilege
relinquishment is successful

Local Variable Size Estimation: Find total size of local variables in a
function
In R2016b, you can compute the total size of local variables in a function using the following two
metrics:

• Lower Estimate of Local Variable Size: Total size of local variables taking nested scopes into
account.

If a function has variable definitions in nested scopes, the software computes the total variable
size in each scope and uses whichever total is greatest. For instance, if a conditional statement
has variables definitions, the software computes the total variable size in each branch and then
uses whichever total is greatest.

• Higher Estimate of Local Variable Size: Total size of all local variables.

R2016b

10-10

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/unsafeconversionfromstringtonumericalvalue.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/unsafeconversionfromstringtonumericalvalue.html
https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.+Detect+errors+when+converting+a+string+to+a+number
https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.+Detect+errors+when+converting+a+string+to+a+number
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/abnormalterminationofexithandler.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/abnormalterminationofexithandler.html
https://wiki.sei.cmu.edu/confluence/display/c/ENV32-C.+All+exit+handlers+must+return+normally
https://wiki.sei.cmu.edu/confluence/display/c/ENV32-C.+All+exit+handlers+must+return+normally
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/unsafeconversionbetweenpointerandinteger.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/unsafeconversionbetweenpointerandinteger.html
https://wiki.sei.cmu.edu/confluence/display/c/INT36-C.+Converting+a+pointer+to+integer+or+integer+to+pointer
https://wiki.sei.cmu.edu/confluence/display/c/INT36-C.+Converting+a+pointer+to+integer+or+integer+to+pointer
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/openingpreviouslyopenedresource.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/openingpreviouslyopenedresource.html
https://www.securecoding.cert.org/confluence/display/c/FIO24-C.+Do+not+open+a+file+that+is+already+open
https://www.securecoding.cert.org/confluence/display/c/FIO24-C.+Do+not+open+a+file+that+is+already+open
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/returnedvalueofasensitivefunctionnotchecked.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/returnedvalueofasensitivefunctionnotchecked.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/returnedvalueofasensitivefunctionnotchecked.html
https://www.securecoding.cert.org/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions
https://www.securecoding.cert.org/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions
https://wiki.sei.cmu.edu/confluence/display/c/ERR33-C.+Detect+and+handle+standard+library+errors
https://wiki.sei.cmu.edu/confluence/display/c/ERR33-C.+Detect+and+handle+standard+library+errors
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/badorderofdroppingprivileges.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/badorderofdroppingprivileges.html
https://wiki.sei.cmu.edu/confluence/display/c/POS36-C.+Observe+correct+revocation+order+while+relinquishing+privileges
https://wiki.sei.cmu.edu/confluence/display/c/POS36-C.+Observe+correct+revocation+order+while+relinquishing+privileges
https://wiki.sei.cmu.edu/confluence/display/c/POS36-C.+Observe+correct+revocation+order+while+relinquishing+privileges
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/privilegedropnotverified.html
https://wiki.sei.cmu.edu/confluence/display/c/POS37-C.+Ensure+that+privilege+relinquishment+is+successful
https://wiki.sei.cmu.edu/confluence/display/c/POS37-C.+Ensure+that+privilege+relinquishment+is+successful
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/lowerestimateoflocalvariablesize.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/higherestimateoflocalvariablesize.html

Metrics for C++ Templates: View code complexity metrics for
instances of C++ templates
In R2016b, you can compute code complexity metrics for C++ templates. If you instantiate a C++
template function and specify the option Calculate code metrics (-code-metrics), you can now see
function metrics for the template in your analysis results.

The metrics appear on the template definition. The software uses the first instance of the template to
calculate the metrics. If you specialize a template, you see separate metrics for the original template
and its specialization.

For more information, see Code Metrics.

Changes to coding rule checking
Expanded MISRA C++ Support

The following MISRA C++:2008 rules are now supported.

• 0-1-9: There shall be no dead code.
• 0-1-11: There shall be no unused parameters (named or unnamed) in nonvirtual functions.
• 0-1-12: There shall be no unused parameters (named or unnamed) in the set of parameters for a

virtual function and all the functions that override it.
• 0-2-1: An object shall not be assigned to an overlapping object.
• 16-6-1: All uses of the #pragma directive shall be documented.

Updated Specifications

The Polyspace specifications for the following rules have been updated.

Standard Rule Change
MISRA C++:2008 5–0–3 If two types have the same size in the target configuration,

Polyspace no longer raises a violation.
5–0–6 If two types have the same size in the target configuration,

Polyspace no longer raises a violation.
5–0–8 If two types have the same size in the target configuration,

Polyspace no longer raises a violation.
MISRA C:2004 and
MISRA AC AGC

10.1 If two types have the same size in the target configuration,
Polyspace no longer raises a violation.

10.2 If two types have the same size in the target configuration,
Polyspace no longer raises a violation.

10.3 If two types have the same size in the target configuration,
Polyspace no longer raises a violation.

10.4 If two types have the same size in the target configuration,
Polyspace no longer raises a violation.

MISRA C:2012 10.3 If two types have the same size in the target configuration,
Polyspace no longer raises a violation.

 Analysis Results

10-11

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/calculatecodemetricscodemetrics.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/metrics-reference.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/misra-c-coding-rules-1.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/coding-rule-reference.html

Standard Rule Change
10.6 If two types have the same size in the target configuration,

Polyspace no longer raises a violation.
10.7 If two types have the same size in the target configuration,

Polyspace no longer raises a violation.
10.8 If two types have the same size in the target configuration,

Polyspace no longer raises a violation.

Updated Bug Finder defect checkers
For the new defects that explicitly correspond to CERT-C rules, see “CERT C Support: Identify CERT
C violations using defect checkers and coding rules” on page 10-9.

Numerical

Name Description Update
Absorption of float operand In an addition or subtraction, one

operand is absorbed by the other
and has no effect on the result

New defect

Programming

Name Description Update
Typedef mismatch Mismatch between typedef

statements
New defect

Static Memory

Name Description Update
Unreliable cast of function
pointer

A function pointer is cast to
another function pointer with
different argument or return type

You can check C++ code for this
defect.

Concurrency

Name Description Update
Data race Multiple tasks perform unprotected

non-atomic operations on shared
variables

You can see a graphical view of
the call sequence leading to
conflicting operations on the
shared variable.

If you have existing critical
sections, this graph also shows
you the critical sections. Using
this information, you can easily
identify how to protect the shared
variable from concurrent access.

R2016b

10-12

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/absorptionoffloatoperand.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/typedefmismatch.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/unreliablecastoffunctionpointer.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/unreliablecastoffunctionpointer.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/datarace.html

Data Flow

Name Description Update
Write without a further read Variable not read after assignment The defect does not appear if the

variable that is assigned the value
NULL and not read again.

 Analysis Results

10-13

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/writewithoutafurtherread.html

Reviewing Results

Data Race Graphs: Fix data race defects easily using graphical view of
function call sequence
In R2016b, you can use a new graphical view to determine fixes for concurrency defects such as Data
race. For each pair of conflicting operations on a shared variable, the graphical view shows:

• Two function call sequences leading to the two operations.

The first node in each sequence represents the entry point function. The last node represents the
operation. The intermediate nodes represent functions call sequence leading from the entry point
to the operations. To navigate to a function in your source code, click the corresponding node in
the graph.

• Critical sections that are already active when a function is called.

If certain critical sections are active when a function is called, the corresponding node in the
graph shows a icon. To see which critical sections are active, place your cursor on the node.

Using this information, you can easily determine how to place appropriate protections and prevent
two operations in different tasks/threads from conflicting with each other.

For instance, the following graph shows two tasks calling the function setlocale. The two calls are
not protected by the same critical section even though the second call uses a critical section. To
protect the two calls from interfering with each other, see the Access Protections entry for the
critical section on the second call and reuse this critical section for the first call.

Interactive Graphical Display: Click graphs on Dashboard to filter
results
In R2016b, you can narrow down the scope of your review by using a graphical display of analysis
results. Previously you used the graphs to obtain an overview of the analysis results and determine
which results to focus on. Now you can also select elements in the graphs to view only the results
that you want to focus on. To see all results again, clear your filters in one click.

To filter results, you can use the following graphs:

R2016b

10-14

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/datarace.html

• Defect distribution by impact: If you click a region on this pie chart that corresponds to the
impact High, the Results List pane shows high-impact defects only.

• Defect distribution by category (Top 10 only): If you click a column corresponding to a defect,
the Results List pane shows instances of that defect only.

• Coding rule violations by rule (Top 10 only): If you click a column corresponding to a coding
rule, the Results List pane shows violations of that rule only.

For more information, see Filter and Group Results.

Event History for Coding Rules: Navigate easily between two locations
in code that together cause a rule violation
In R2016b, for certain coding rules, the Result Details pane shows previous events causing the rule
violation. You can click an event and navigate to the corresponding location in the source code.

This event history is shown for those rules which are related to more than one location in the code.
 For instance, the event history appears for the following rules:

• MISRA C:2004 Rule 5.2: Identifiers in an inner scope shall not use the same name as an identifier
in an outer scope, and therefore hide that identifier.

• MISRA C:2012 Rule 5.1: External identifiers shall be distinct.
• MISRA C++ Rule 2-10-1: Different identifiers shall be typographically unambiguous.
• JSF C++ Rule 139: External objects will not be declared in more than one file.

Results in Macros Consolidated: View coding rule violations and
defects on macro definitions instead of macro instances
When you run coding rules checking, violations from macro definitions can propagate throughout
your code causing many results. In R2016b, coding rule violations and defects caused by a macro are
now shown on the macro definition. This change reduces the number of results with the same root
cause, making your review process simpler.

Analysis Objectives in Eclipse: Create review scopes to focus your
review
From the Eclipse plugin, you can now create custom review scopes. Review scopes filter your results
to only the defects, coding rules, or code metrics you want to see. For more information, see Limit
Display of Defects.

 Reviewing Results

10-15

https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/filter-results.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/misrac2012rule5.1.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/limit-display-of-defects.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/limit-display-of-defects.html

Filtered Report: Reuse result filters for generated report
In R2016b, if you apply filters to your results, you can reuse those filters for the generated report. For
instance, you can use filters to view only the following subset of results on the Results List pane and
then reuse those filters for the report.

• View only high-impact defects and create a report with those defects only.
• View only new results found since the last analysis and create a report with the new results only.
• View only code metrics that exceed specified thresholds and create a report with those metrics

only.

On the Results List pane, you can apply complicated filtering criteria to show only the results that
are most meaningful to you. You can reuse these criteria for your generated report and show only the
results that you want the report reviewer to focus on. For more information on the filters you can use,
see Filter and Group Results.

The report shows which filters you have applied. Another person reviewing your report can see your
filtering criteria.

Results Export: Export results to text file for computing graphs and
statistics
In R2016b, you can export your results to a tab delimited text file. You can parse the text file using
MATLAB or Excel® and generate graphs or statistics about your results that you cannot obtain readily
from the user interface.

For more information, see Export Results to Text File.

Coding Rules in Report: View improved presentation of coding rules
violations in report
In R2016b, the following improvements have been made in how coding rule violations appear in the
report.

Coding Rule Graphs

If you choose to report coding rule violations, the report contains two new graphs.

• The first graph shows the number of coding rule violations broken down by file.

• The second graph shows the number of violations broken down by rule number.

R2016b

10-16

https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/filter-results.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/export-results-to-text-file.html

Coding Rule Template

You can now create a report that shows coding rules violation only. The report does not show other
Polyspace Bug Finder results.

For more information, see the description of template CodingRules in Report template (-report-
template).

English Reports in Non-English Locales: Generate English reports on
operating systems with a different language
In R2016b, even if your operating system has a display language (Windows) or locale (Linux) such as
Japanese or Korean, you can still generate English reports. See Generate Reports from Command
Line.

Change in report template location
The location of the report template files has changed to matlabroot/toolbox/polyspace/
psrptgen/templates. Here, matlabroot is the MATLAB installation folder.

If you use the report templates provided by Polyspace, the change does not impact you. If you use
MATLAB Report Generator™ to modify the Polyspace report templates, you can open the templates
from this new location.

Improved PDF Report Generation
In R2016b, the generation of PDF reports is improved.

• The report generation is faster. For large results, the report generation is much less likely to cause
out-of-memory errors.

• The reports use an improved visual display.

Changes in Polyspace User Interface
The following table lists minor changes to the user interface including new pane names and new
icons.

 Reviewing Results

10-17

https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/reporttemplatereporttemplate.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ref/reporttemplatereporttemplate.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/generate-bug-finder-reports.html#bva_g8x
https://www.mathworks.com/help/releases/R2016b/bugfinder/ug/generate-bug-finder-reports.html#bva_g8x

• Results List — Window showing list of results, previously called Results Summary.
•

 — Button to remove items in the configuration or projects.
• The icons on the Results List pane have been rearranged.

In R2016a, the icons were arranged as below.

In R2016b, the same icons are arranged as below.

R2016b

10-18

R2016a

Version: 2.1

New Features

Bug Fixes

Compatibility Considerations

11

Analysis Setup
Files to Review: Generate results for only specified files and folders
In R2016a, you have greater control over the files on which you want analysis results. The default
project configuration displays results on the set of files that are likely to be most relevant to you. You
can add files or folders to this set based on your requirements.

For instance, by default, coding rule violations and code metrics are generated on header files that
are located in the same folder as the source files. Often, other header files belong to a third-party
library. Though these header files are required for a precise analysis, you are not interested in
reviewing findings in those headers. Therefore, by default, results are not generated for those
headers. If you are interested in certain headers from third-party libraries, you can add those headers
to the subset on which results are generated.

For more information, see:

• Generate results for sources and (-generate-results-for)
• Do not generate results for (-do-not-generate-results-for)

Compatibility Considerations
In R2016a, by default, results are not generated for headers unless they are in the same location as
source files. Previously, if you ran an analysis at the command line, by default, results were generated
for all headers.

Due to the change in default behavior, if you rerun the analysis on a pre-R2016a project without
explicitly changing the options, you can lose review comments on findings in some header files. To
avoid losing the comments, set the option Generate results for sources and (-generate-results-
for) to all-headers.

Faster MISRA Checking: Check coding rules more quickly and
efficiently
In R2016a, you can use two predefined subsets to perform a quicker and more efficient check for
coding rule violations. The new subsets turn on rules that have the same scope.

• single-unit-rules — Check rules that apply only to single translation units.
• system-decidable-rules — Check rules in the single-unit-rules subset and some rules

that apply to the collective set of program files. The additional rules can be checked only at the
integration level because the rules involve more than one translation unit.

Polyspace finds these subsets of rules in the early phases of the analysis. If your project is large,
before checking all rules, you can check these subsets of rules for a quick preliminary analysis.

For more information, see Coding Rule Subsets Checked Early in Analysis.

S-Function Analysis: Launch analysis of S-Function code from Simulink
With the Polyspace plug-in for Simulink, you can now start a Polyspace analysis on S-Functions
directly from an S-Function block.

R2016a

11-2

https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/coding-rules-checked-earlier-in-analysis.html
https://www.mathworks.com/help/releases/R2016a/simulink/slref/sfunction.html

To analyze an S-Function, right-click the S-Function block and select Polyspace > Verify S-
Function. If the S-Function occurs in your model multiple times, you can choose to analyze every
instance of the S-Function by analyzing with the different signal range inputs, or just a single
instance of the S-Function analyzing with the specific signal ranges for that block.

Import signal ranges from model for generated code analysis
When you run a Polyspace Bug Finder analysis from Simulink, you can now include the signal range
information with your analysis. The signal ranges become constraint specifications (formerly called
DRS) for the variables in your analysis. For more information see, Configure Data Range Settings and
Constraints.

Polyspace Metrics Tomcat Upgrade: Use upgraded default Tomcat
server or custom Tomcat version
Polyspace Metrics now uses Tomcat 8.0.22 to run the Polyspace Metrics web interface.

If you want to use your own version of Tomcat, you can now specify a custom Tomcat server in the
daemon configuration file. To add your custom tomcat web server, add the following line to the
daemon configuration file.

tomcat_install_dir = <path/to/tomcat>

The daemon configuration file is located in:

• Windows — \%APPDATA%\Polyspace_RLDatas\polyspace.conf
• Linux — /etc/Polyspace/polyspace.conf

Polyspace Metrics Interface Updated: View project and metrics
summary and defect impact
The Polyspace Metrics web interface has been updated to include new features:

• The Bug Finder analysis uploaded to Polyspace Metrics now includes new metrics summarizing
the number of defects with High, Medium, and Low impact. For more information on the impact
classification, see Classification of Defects by Impact.

• You can now view project-level metric summaries from the main Polyspace Metrics page using one
of the following methods:

• On the Projects tab, roll your mouse over the list of projects to open a window displaying a
summary of the project and project metrics.

• On the Projects or Runs tab, right-click the column headers to add new columns to the table.
new columns you can add include Coding Rules, Bug-Finder Checks, Code Metrics, and Review
Progress.

For more information, see View Projects in Polyspace Metrics.

Source Code Search: Search huge applications more quickly
In R2016a, search results are produced more quickly. If you search for a string in a huge application,
it takes less time for search results to appear.

 Analysis Setup

11-3

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/configure-data-range-settings.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/drs-configuration-settings.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/result-grouping-by-impact.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/view-software-quality-metrics.html

You can search for a string either by entering the search string in the box on the Search pane, or by
right-clicking a word in your code on the Source pane, and then selecting a search option.

Default Layouts: Switch easily between project setup and results
review in user interface
In R2016a, you have two default layouts of panes in the Polyspace user interface, one for project
setup and another for results review.

When setting up your projects, select Window > Reset Layout > Project Setup. When reviewing
results, select Window > Reset Layout > Results Review.

For more information, see Organize Layout of Polyspace User Interface.

Files Not Compiled: Receive alerts about compilation errors in
dashboard and reports
If some of your source files contain compilation errors, Polyspace Bug Finder analyzes those files only
for code metrics and some coding rules.

In R2016a, if some of your files are analyzed only partially because of compilation errors:

• On the Dashboard pane, you can see that some files failed to compile. Further information about
the compilation errors is available on the Output Summary pane. For more information, see
Dashboard.

• If you generate reports by using the BugFinderSummary or BugFinder template, the chapter
Polyspace Bug Finder Summary lists the files that are partially analyzed. For more information,
see Report template (-report-template).

Project Language Flexibility: Change your project language at any
time
Projects in the Polyspace interface are no longer fixed to one language.

When you create your projects, you can add any file to the project. After you add files, select the
language (C, C++, or C/C++) for your analysis using the Source code language (-lang) option. If you
add or change the files in your project, you can change the language to reflect the most suitable
analysis type.

Many options that were C only or C++ only are now available for both languages. To see which
analysis options have changed, see “Changes in analysis options” on page 11-5.

Improvements in automatic project creation from build command
In R2016a, automatic project creation from build command is improved.

• If you trace your build command and create a Polyspace project from the command line, you do
not have to specify a product name or project language. You can open the project in Polyspace Bug
Finder or Polyspace Code Prover. The project language is determined by using the following rules:

R2016a

11-4

https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/organize-layout-of-polyspace-user-interface.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/overview-of-results-manager.html#bt2i3mk-1
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/reporttemplatereporttemplate.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/sourcecodelanguagelang.html

• If all your files are compiled as C, as C++03, or C++11, the corresponding language is
assigned to the project.

Language Options Set in Project
C Source code language: c
C++03 Source code language: cpp
C++11 Source code language: cpp

C++11 Extensions: On

• If some files are compiled as C and the remaining files as C++03 or C++11, the Source code
language option is set to c-cpp.

The option C++11 Extensions is also enabled.

For more information, see Source code language (-lang) and C++11 Extensions (-cpp11-
extensions).

Previously, you specified the product name by using options -bug-finder or -code-prover. If
you did not specify a project language and your source code consisted of both .c and .cpp files,
the language cpp was assigned to the project. The options -bug-finder and -code-prover
have been removed.

For more information, see Create Project Automatically at Command Line.
• The support for IAR compilers has improved. All variations of IAR compilers are now supported for

automatic project creation from build command.

Polyspace TargetLink plug-in supports data from structures
The Polyspace plug-in for TargetLink® can now import data from structures in the constraint
specifications (formerly called DRS) for your analysis.

Changes in analysis options
In R2016a, the following options have been added, changed, or removed.

New Options

Option Description
Generate results for sources and (-
generate-results-for)

Specify files on which you want analysis results.

Do not generate results for (-do-not-
generate-results-for)

Specify files on which you do not want analysis results.

 Analysis Setup

11-5

https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/sourcecodelanguagelang.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/c11extensionscpp11extension.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/c11extensionscpp11extension.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/create-project-from-command-line.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Updated Options

Option Change More Information
Source code language (-lang) New value c Select your project

language to set
compilation rules and
enable language specific
analysis options.

Dialect (-dialect) Unified dialects for C, C/C++,
and C++ projects. All projects
can use any dialect option.

Target processor type (-target) Targets i386 and x86_64 now
allow any alignment value.

Sfr type support (-sfr-types) Allowed for C, C++, C/C++
Respect C90 standard (-no-language-
extensions)

Allowed for mixed C/C++
projects

Pack alignment value (-pack-
alignment-value)

Allowed for C, C++, C/C++

Import folder (-import-dir) Allowed for C, C++, C/C++
Ignore pragma pack directives (-
ignore-pragma-pack)

Allowed for C, C++, C/C++

Division round down (-div-round-
down)

Allowed for C, C++, C/C++

Removed Options

Option Status Description
Files and folders to ignore (-
includes-to-ignore)

Warning Use the option Do not generate results for (-
do-not-generate-results-for) to
suppress results from headers and sources in
certain files or folders.

-support-FX-option-results Warning Option will be removed in a future release.

Compatibility Considerations
If you use scripts that contain the removed or updated options, change your scripts accordingly.

R2016a

11-6

https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/sourcecodelanguagelang.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/dialectdialect.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/sfrtypesupportsfrtypes.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/respectc90standardnolanguageextensions.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/respectc90standardnolanguageextensions.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/packalignmentvaluepackalignmentvalue.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/packalignmentvaluepackalignmentvalue.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/importfolderimportdir.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/ignorepragmapackdirectivesignorepragmapack.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/ignorepragmapackdirectivesignorepragmapack.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/divisionrounddowndivrounddown.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/divisionrounddowndivrounddown.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Analysis Results

Improvements to defect checkers
In R2016a, there are improvements in detection of certain defects. For instance, with the checkers
for defects Dead code and Useless if:

• You see the code sequence leading to the defect in a greater number of situations. For more
information, see Navigate to Root Cause of Defect.

• You see fewer false positives. For instance, you do not see false Dead code or Useless if defects
associated with the following constructs:

• _setjmp
• Pointer parameter pointing to a global variable

• You do not see defects in templates.

Improvements in checking of previously supported MISRA C rules
In R2016a, the following changes have been made in checking of previously supported MISRA C
rules.

MISRA C:2004 Rules

Rule Description Improvement
MISRA C:2004 Rule 10.3 The value of a complex

expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression.

The rule checker no longer raises a
violation of this rule if an expression with a
Boolean result is cast to a type that is also
effectively Boolean.

For instance, in your code, you define a
type myBool using a typedef and cast the
result of (a && b) to myBool. If you
specify to Polyspace that myBool is
effectively Boolean, the rule checker does
not consider this cast as a violation of rule
10.3. For more information on how to
specify effectively Boolean types, see
Effective boolean types (-boolean-types).

MISRA C:2004 Rule 12.2 The value of an
expression shall be the
same under any order of
evaluation that the
standard permits.

The rule checker no longer flags
expressions with the comma operator that
can be evaluated in only one order.

For instance, the statement ans = (val+
+, val++) does not violate this rule.

 Analysis Results

11-7

https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/deadcode.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/uselessif.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/navigate-to-root-cause-of-defect.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/effectivebooleantypesbooleantypes.html

MISRA C:2012 Rules

Rule Description Improvement
MISRA C:2012 Rule 13.2 The value of an

expression and its
persistent side effects
shall be the same under
all permitted evaluation
orders.

The rule checker no longer flags
expressions with the comma operator that
can be evaluated in only one order.

For instance, the statement ans = (val+
+, val++) does not violate this rule.

Standards Mapped to Defects: Observe coding standards using
Polyspace Bug Finder
CERT C mapping

In R2016a, you can now observe coding standards such as SEI CERT C Coding Standards by using
Polyspace Bug Finder.

For more information, see Mapping Between CERT C Standards and Defects.

CWE ID mapping

In R2016a, the following changes have been made in the mapping between CWE IDs and Polyspace
Bug Finder defects.

Defect CWE ID: Prior to R2016a CWE ID: R2016a
Invalid use of standard library
integer routine

CWE-369: Divide By Zero • CWE-227: Improper
fulfillment of API contract

• CWE-369: Divide By Zero
• CWE-682: Incorrect

Calculation
• CWE-872: CERT C++ Secure

Coding Section 04 - Integers
(INT)

For more information, see Mapping Between CWE Identifiers and Defects.

R2016a

11-8

https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/misrac2012rule13.2.html
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/mapping-between-cert-cc-standards-and-defects.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/invaliduseofstandardlibraryintegerroutine.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ref/invaliduseofstandardlibraryintegerroutine.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/872.html
https://cwe.mitre.org/data/definitions/872.html
https://cwe.mitre.org/data/definitions/872.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/mapping-between-cwe-identifiers-and-defects.html

Reviewing Results
More results available in real time
When you run a Bug Finder analysis, more results for blocks of code are now available while the
analysis is running. For information about how to open results during the analysis, see Open Results.

Autocompletion for Review Comments: Partially type previous
comment to select complete comment
In R2016a, on the Results Summary or Result Details pane, if you start typing a review comment
that you have previously entered, a drop-down list shows the previous entry. Select the previous
comment from this list instead of retyping the comment.

If you want the autocompletion to be case sensitive, select Tools > Preferences. On the
Miscellaneous tab, select Autocomplete on Results Summary or Details is case sensitive.

Persistent Filter States: Apply filters once and view filtered results
across multiple runs
In R2016a, if you apply a set of filters to your analysis results and rerun analysis on the project, your
filters are also applied to the new results. You can specify your filters once and suppress results that
are not relevant for you across multiple runs.

The Results Summary pane shows the number of results filtered from the display. If you place your
cursor on this number, you can see the applied filters.

For instance, in the image, you can see that the following filters have been applied:

• The Defects & Rules filter to suppress code metrics and global variables.
•

The filter to suppress results found in a previous analysis.
• Filters on the Information and Check columns.

For more information, see Filter and Group Results.

Polyspace Eclipse plug-in results location moved
When you analyze projects using the Polyspace plug-in for Eclipse, your results used to be stored
inside your Eclipse project under eclipse project folder\polyspace. For new Eclipse

 Reviewing Results

11-9

https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/open-results.html
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/filter-results.html

projects, Polyspace now stores results in the Polyspace Workspace under Polyspace_Workspace
\EclipseProjects\Eclipse Project Name, where Polyspace_Workspace is the default
project location specified in your Polyspace Interface preferences. For more information, see Results
Location.

R2016a

11-10

https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/view-results-in-polyspace-environment.html#bu85hm_
https://www.mathworks.com/help/releases/R2016a/bugfinder/ug/view-results-in-polyspace-environment.html#bu85hm_

R2015aSP1

Version: 1.3.1

Bug Fixes

12

R2015b

Version: 2.0

New Features

Bug Fixes

Compatibility Considerations

13

Analysis Setup

Mixed C/C++ Code: Run analysis on entire project with C and C++
source files
If your coding project contains C and C++ files, you can now analyze the entire project in one
Polyspace project. Use the new C/C++ setting to compile .c files with C compilation rules and
compile .cpp and other files with C++ compilation rules.

To create a mixed C and C++ project:

• At the command line, use the option -lang C-CPP.
• In the user interface:

1 Select File > New Project.
2 In the Project properties window, select Project Language > C++ as the main project

language. Enter your other project properties as before.
3 When adding source files, add your .c and .cpp files with their include files.
4 In the configuration, on the Target & Compiler pane, set Source code language > C-CPP.

This setting indicates to the compiler to use C compilation rules for .c files and C++
compilation rules for .cpp files. For other file extensions, Polyspace uses C++ compilation
rules.

5 Set your other options as required. Some limitations to consider:

• Coding rules — You can select only one C coding rule set and one C++ coding rule set.
• Bug Finder Defects — You can select C/C++ or C++ defects. The C++ defects are

checked only on .cpp files.

Autodetection of Multitasking Primitives: Analyze source code with
multitasking primitives from POSIX and VxWorks without manual
setup
If you use POSIX or VxWorks to perform multitasking, Polyspace can now interpret your multitasking
code more easily.

Functions Polyspace can interpret:

POSIX

• pthread_create
• pthread_mutex_lock
• pthread_mutex_unlock

VxWorks

• taskSpawn
• semTake
• semGive

R2015b

13-2

By default in R2015b, Polyspace detects thread creating and critical sections from supported
multitasking functions.

For more information, see Modeling Multitasking Code.

Microsoft Visual C++ 2013: Analyze code developed in Microsoft
Visual C++ 2013
You can analyze code developed in the Microsoft Visual C++ 2013 dialect.

To analyze code compiled with Microsoft Visual C++ 2013, set your dialect to visual12.0. Once you
specify your dialect, Microsoft Visual C++ allows language extensions specific to Microsoft Visual C+
+ 2013. For more information, see Dialect (C) or Dialect (C++).

GNU 4.9 and Clang 3.5 Support: Analyze code compiled with GNU 4.9
or Clang 3.5
Polyspace now supports the GNU 4.9 and Clang 3.5 dialects for C and C++ projects.

To analyze code compiled with one of these dialects, set the Target & Compiler > Dialect option to
gnu4.9 or clang3.5.

For more information, see Dialect (C) or Dialect (C++).

Improvements to automatic project creation from build command
In R2015b, automatic project creation from your build command is improved:

• If you build your source code from the Cygwin environment (using either a 32-bit or 64-bit
installation), Polyspace can trace your build and to create a Polyspace project or options file.

• Support for the following compilers has improved:

• Texas Instruments C2000 compiler

This compiler is available with Code Composer Studio™.
• Cosmic HC08 C compiler
• MPLAB XC8 C Compiler

• With certain compilers, the speed of tracing your build command has improved. The software now
stores build information in the system temporary folder, thereby allowing faster access during the
build.

If you still encounter a slow build, use the advanced option -cache-path ./ps_cache when
tracing your build. For more information, see Slow Build Process When Polyspace Traces the
Build.

• If the software detects target settings that correspond to a standard processor type, it assigns that
standard target processor type to your project. The target processor type defines the size of
fundamental data types and the endianness of the target machine. For more information, see
Target processor type (C/C++).

Previously, when you created a project from your build command, the software assigned a custom
target processor type. Although you saw the processor type in the form of an option such as -

 Analysis Setup

13-3

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/modeling-multitasking-code.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect-1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect-1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/slow-build-process-when-tracing-builds.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/slow-build-process-when-tracing-builds.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/target-processor-type.html

custom-target
true,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_short, you
could not identify easily how many bits were associated with each fundamental type. With this
enhancement, when the software assigns a processor type, you can identify the number of bits for
each type. Click the Edit button for the option Target processor type.

• Automatic project creation uses a configuration file written for specific compilers. If your compiler
is not supported, you can adapt one of the existing configuration files for your compiler. The
configuration file, written in XML, is now simplified with some new elements, macros and
attributes.

• The preprocess_options_list element supports a new $(OUTPUT_FILE) macro when the
compiler does not allow sending the preprocessed file to the standard output.

• A new preprocessed_output_file element allows the preprocessed file name to be
adapted from the source file name.

• The semantic_options element supports a new isPrefix attribute. This attribute provides
a shortcut to specify multiple semantic options that begin with the same prefix.

• The semantic_options element supports a new numArgs attribute. This attribute provides a
shortcut to specify semantic options that take one or more arguments.

For more information, see Compiler Not Supported for Project Creation from Build Systems.
• Sometimes, the build command returns a non-zero status even when the command succeeds. The

non-zero status can result from warnings in the build process. However, Polyspace does not trace
the build and create a Polyspace project. You can now use an option -allow-build-error to
create a Polyspace project even if the build command returns an exit status or error level different
from zero. This option helps you understand the error in the build process.

For more information, see -option value arguments of polyspaceConfigure.

Start Page: Get oriented with Polyspace Bug Finder
In R2015b, when you open Polyspace Bug Finder for the first time, a Start Page pane appears. From
this pane, you can:

• Open Polyspace recent results and examples.
• Start a new project.
• Get additional help using the Getting Started, What’s New, and Learn More tabs.

If you select the Show on startup box, the pane appears each time you open Polyspace Bug Finder.
Otherwise, if you close the pane once, it does not reopen. To open the pane, select Window > Show/
Hide View > Start Page.

Saved Layouts: Save your preferred layouts of the Polyspace user
interface
In R2015b, if you reorganize the Polyspace user interface and place the various panes in more
convenient locations, you can save your new layout. If you change your layout, you can quickly revert
to a saved layout.

With this modification, you can create customized layouts suitable for different requirements. You can
switch between saved layouts quickly. For instance:

R2015b

13-4

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/your-compiler-is-unknown.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/polyspaceconfigure.html

• You can have separate layouts for project configuration and results review.
• You can have a minimal layout with only the frequently used panes.

For more information, see Organize Layout of Polyspace User Interface.

Renaming of labels in Polyspace user interface
In the Polyspace user interface, the following labels have been renamed:

• On the Configuration pane, the Coding Rules node is renamed Coding Rules & Code Metrics.

The new Coding Rules & Code Metrics node now contains the option Calculate Code Metrics,
which previously appeared in the Advanced Settings node.

• On the Results Summary pane, the Category column title is changed to Group. This change
avoids confusion with coding rule categories.

• On the Results Summary and Result Details pane, the field Classification is changed to
Severity. You assign a Severity such as High, Medium and Low to a defect to indicate how critical
you consider the issue.

• The labels associated with specifying constraints have changed as follows:

• On the Configuration pane, the field Variable/function range setup is changed to
Constraint setup.

• When you click Edit beside the Constraint Setup field, a new window opens. The window name
is changed from Polyspace DRS Configuration to Constraint Specification.

For more information, see Specify Constraints.

Including options multiple times
You can specify analysis options multiple times. This new capacity is available only at the command
line or using the command-line names in the Advanced options pane in the user interface. You can
customize pre-made configurations without having to remove options.

If you specify an option multiple times, only the last setting is used. For example, if your configuration
is:

-lang c
-prog test_bf_cp
-verif-version 1.0
-author username
-sources-list-file sources.txt
-OS-target no-predefined-OS
-target i386
-dialect none
-misra-cpp required-rules
-target powerpc

Polyspace uses the last target setting, powerpc, and ignores the other target specified, i386.

In the user interface, if you specify c18 as the target on the Target and Compiler pane and in
Advanced options enter -target i386, these two targets count as multiple analysis option
specifications. Polyspace uses the target specified in the Advanced options dialog box, i386.

 Analysis Setup

13-5

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/organize-layout-of-polyspace-user-interface.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/specify-constraints.html

Updated Support for TargetLink
The Polyspace plug-in for TargetLink now supports versions 3.5 and 4.0 of the dSPACE® Data
Dictionary and TargetLink Code Generator.

dSPACE and TargetLink version 3.4 is no longer supported.

For more information, see TargetLink Considerations.

Changes in analysis options
In R2015b, the following options have been added, changed, or removed.

New Options

Option Status Description
Respect C90 Standard

(-no-language-extensions)

New The analysis does not allow C language
extensions that do not follow the ISO/IEC
9899:1990 standard.

Dialect visual12.0 New Allows Microsoft Visual C++ 2013 (visual 12)
language extensions.

Dialect gnu4.9 New Allows GCC 4.9 language extensions.
Dialect clang3.5 New Allows Clang 3.5 language extensions.
Source code language (C++)

(-lang)

New in the user
interface

The -lang option is now available in the
Polyspace user interface. It is on the Target &
compiler tab and called Source code
language.

Source code language (C++) >
C-CPP

(-lang C-CPP)

New option setting For C++ projects, you can choose C-CPP to
analyze a mix of .c and .cpp source files.

Configure multitasking manually
(C/C++)

New A user interface option only. This option
enables the previous multitasking options

• Entry points
• Critical section details
• Temporally exclusive tasks

Disable automatic concurrency
detection (C/C++)

New By default, the new automatic concurrency
detection is enabled. If you want to turn it off,
select this option.

R2015b

13-6

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/targetlink-considerations.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/respect-c90-standard-c.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/source-code-language-c.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/source-code-language-c.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/multitasking-cc.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/multitasking-cc.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/disable-automatic-concurrency-detection.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/disable-automatic-concurrency-detection.html

Updated Options

Option Change Description
Calculate Code Metrics (C/C++) Moved in user

interface
The option has been moved in the
Configuration panel from the Advanced
Settings pane to the Coding Rules and
Code Metrics pane.

Signed right shift (C/C++)

(-logical-signed-right-
shift)

Now available in C
++ projects

Division round down (C/C++)

(-div-round-down)

Now available in C
++ projects

Targets:

• tms320c3x
• sharc21x61
• necv850
• hc08
• hc12
• mpc5xx
• c18

Now available in C
++ projects

Enum type definition (C/C++)

(-enum-type-definition)

Possible values
updated

The possible values for -enum-type-
definition now match for C and C++.
Available values:

• defined-by-standard (default)
• auto-signed-first
• auto-unsigned-first

-support-FX-option-
results

No longer
available in the
user interface

-pointer-is-24bits Available in C++
projects

Available only if you use the Target setting
c18.

-asm-begin -asm-end Now available in C
++ projects

Check MISRA C:2004 Now available in C
++ projects

Available only if you select Source code
language > C-CPP.

Check MISRA AC AGC Now available in C
++ projects

Available only if you select Source code
language > C-CPP.

Check MISRA C:2012 and Use
generated code requirements
(C)

Now available in C
++ projects

Available only if you select Source code
language > C-CPP.

 Analysis Setup

13-7

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calculate-code-metrics.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signed-right-shift.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/division-round-down.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/target-processor-type.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/enum-type-definition.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/asmbeginasmend.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_brj7vi6-52.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-ac-agc-rules.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c2012.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_buee9fc-1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_buee9fc-1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_buee9fc-1.html

Option Change Description
Effective boolean types (C) Now available in C

++ projects
Available only if you select Source code
language > C-CPP.

Allowed pragmas (C) Now available in C
++ projects

Available only if you select Source code
language > C-CPP.

Output format (C/C++)

-report-output-format

Possible values
updated

The output format RTF is deprecated and not
available on the Configuration pane.

Removed Options

Option Status Description
-dialect cfront2 Removed Choose a different dialect.
-dialect cfront3 Removed Choose a different dialect.
-passes-time Removed Polyspace includes this behavior by default.

Remove this option from existing
configurations.

-include-headers-once Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-discard-asm Removed This option is no longer supported. Remove this
option from existing configurations.

-misra2 AC-AGC-OBL-
subset

Removed Use -misra-ac-agc OBL-rules instead.

Compatibility Considerations
If you use scripts that contain the removed or updated options, change your scripts accordingly.

Binaries removed
The following binaries have been removed.

Removed binary Use instead
polyspace-rl-manager.exe polyspace-server-settings.exe
polyspace-spooler.exe polyspace-job-monitor.exe
polyspace-ver.exe polyspace-bug-finder-nodesktop -ver

The binaries to use instead are located in matlabroot/polyspace/bin.

Support for Visual Studio 2008 to be removed
The Polyspace Add-In for Visual Studio 2008 is no longer supported and will be removed in a future
release.

R2015b

13-8

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/effective-boolean-types.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/allowed-pragmas.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/output-format-.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-ac-agc-rules.html

Compatibility Considerations
To analyze your Visual Studio projects, use either:

• The Polyspace Add-in for Visual Studio 2010. See Install Polyspace Add-In for Visual Studio.
• The polyspace-configure tool to create a project using your build command. See Create

Project Using Visual Studio Information.

Import Visual Studio project removed
The Tools > Import Visual Studio project has been removed.

To import your project information from Visual Studio, use the Create from build system option
during new project creation. For more information, see Create Project Using Visual Studio
Information.

 Analysis Setup

13-9

https://www.mathworks.com/help/releases/R2015b/bugfinder/gs/install-polyspace-add-in-for-visual-studio.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html

Analysis Results

More Defect Categories: Detect security vulnerabilities, resource
management issues, object oriented design issues
You can check your code against five new categories of defects:

• Resource management — Defects related to resource handling such as detection of unclosed file
descriptors or use of a closed file descriptor.

• Object oriented — Defects related to C++ object-oriented programming such as detection of class
design issues or issues in the inheritance hierarchy.

• Security — Defects related to security vulnerabilities such as vulnerable standard functions, use of
sensitive data, and pseudo-random number generation.

• Tainted data — Defects related to using variables that someone outside your program can
manipulate and externally controlled resources.

• Good practice — Defects that allow you to observe good coding practices such as detection of
hard-coded memory buffer size or unused function parameters.

For information about the new defects, see “Changes to Bug Finder Defects” on page 13-12.

Complete MISRA C:2012 Support: Detect violations of all MISRA
C:2012 rules
In R2015b, Polyspace Bug Finder supports the following MISRA C: 2012 coding rules.

Rule Description
MISRA C:2012 Directive 2.1 All source files shall compile without any compilation errors.
MISRA C:2012 Directive 4.5 Identifiers in the same name space with overlapping visibility

should be typographically unambiguous.
MISRA C:2012 Directive 4.13 Functions which are designed to provide operations on a

resource should be called in an appropriate sequence.
MISRA C:2012 Rule 2.6 A function should not contain unused label declarations.
MISRA C:2012 Rule 2.7 There should be no unused parameters in functions.
MISRA C:2012 Rule 17.5 The function argument corresponding to a parameter declared

to have an array type shall have an appropriate number of
elements.

MISRA C:2012 Rule 17.8 A function parameter should not be modified.
MISRA C:2012 Rule 21.12 The exception handling features of <fenv.h> should not be

used.
MISRA C:2012 Rule 22.1 All resources obtained dynamically by means of Standard

Library functions shall be explicitly released.
MISRA C:2012 Rule 22.2 A block of memory shall only be freed if it was allocated by

means of a Standard Library function.

R2015b

13-10

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive2.1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.5.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.13.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule2.6.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule2.7.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule17.5.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule17.8.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule21.12.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.2.html

Rule Description
MISRA C:2012 Rule 22.3 The same file shall not be open for read and write access at the

same time on different streams.
MISRA C:2012 Rule 22.4 There shall be no attempt to write to a stream which has been

opened as read-only.
MISRA C:2012 Rule 22.5 A pointer to a FILE object shall not be dereferenced.
MISRA C:2012 Rule 22.6 The value of a pointer to a FILE shall not be used after the

associated stream has been closed.

Improvements in checking of previously supported MISRA C rules
In R2015b, the following changes have been made in MISRA C checking:

MISRA C:2004

Rule Description Improvement
MISRA C:2004 Rule 2.1 Assembly language shall

be encapsulated and
isolated.

If an assembly language statement is
entirely encapsulated in macros, Polyspace
no longer considers that the statement
violates this rule.

MISRA C:2004 Rule 8.8 An external object or
function shall be declared
in one file and only one
file.

Polyspace considers that variables or
functions declared extern in a non-header
file violate this rule.

MISRA C:2004 Rule 10.1 The value of an
expression of integer type
shall not be implicitly
converted to a different
underlying type if it is not
a conversion to a wider
integer type of the same
signedness.

Polyspace no longer raises violation of this
rule on operations involving pointers.

MISRA C:2004 Rule 19.2 Nonstandard characters
should not occur in
header file names in
#include directives.

If the character \ or \\ occurs between the
< and > in #include <filename> (or
between " and " in #include
"filename"), Polyspace no longer raises
violation of this rule.

Therefore, you can use Windows paths to
files in place of filename without
triggering a rule violation.

 Analysis Results

13-11

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.3.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.4.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.5.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.6.html

MISRA C:2012

Rule Description Improvement
MISRA C:2012 Directive
4.3

Assembly language shall
be encapsulated and
isolated.

If an assembly language statement is
entirely encapsulated in macros, Polyspace
no longer considers that the statement
violates this rule.

MISRA C:2012 Rule 1.1 The program shall contain
no violations of the
standard C syntax and
constraints, and shall not
exceed the
implementation's
translation limits.

If a rule violation occurs because your .c
file contains too many macros, Polyspace
places the rule violation at the beginning of
the file instead on the last macro usage.

Therefore, you can add a comment before
the first line of the .c file justifying the
violation. Previously, if you placed a
justification comment before the last macro
usage and later added another macro
usage, the comment no longer applied. For
information on adding code comments to
justify results, see Annotate Code for Rule
Violations.

MISRA C:2012 Rule 10.4 Both operands of an
operator in which the
usual arithmetic
conversions are
performed shall have the
same essential type
category.

• If one of the operands is the constant
zero, Polyspace does not raise a
violation of this rule.

• If one of the operands is a signed
constant and the other operand is
unsigned, the rule violation is not raised
if the signed constant has the same
representation as its unsigned
equivalent.

For instance, the statement u8b = u8a
+ 3;, where u8a and u8b are
unsigned char variables, does not
violate the rule because the constants 3
and 3U have the same representation.

Checking Coding Rules Using Text Files

In R2015b, if your coding rules configuration text file has an incorrect syntax, the analysis stops with
an error message. The error message states the line numbers in the configuration file that contain the
incorrect syntax.

For more information on checking for coding rules using text files, see Format of Custom Coding
Rules File.

Changes to Bug Finder Defects
• “New Defects” on page 13-13
• “Updated Defects” on page 13-18

R2015b

13-12

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.3.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.3.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule1.1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/annotate-code-for-rule-violations.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/annotate-code-for-rule-violations.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule10.4.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html

The following tables list updates and additions to the list of Bug Finder defect checkers.

New Defects

Tainted Data Defects

Name Description
Array access with tainted index Array index from unsecure source possibly outside array bounds
Command executed from
externally controlled path

Path argument from an unsecure source

Execution of externally
controlled command

Command argument from an unsecure source is vulnerable to OS
command injection

Host change using externally
controlled elements

Changing host id from an unsecure source

Library loaded from externally
controlled path

Library argument from an externally controlled path

Loop bounded with tainted
value

Loop controlled by a value from an unsecure source

Memory allocation with tainted
size

Size argument to memory function is from an unsecure source

Pointer dereference with
tainted offset

Offset is from an unsecure source and dereference may be out of
bounds

Tainted division operand Division operands from an unsecure source
Tainted modulo operand Remainder operands from an unsecure source
Tainted NULL or non-null-
terminated string

Argument is from an unsecure source and may be NULL or not
NULL-terminated

Tainted sign change conversion Value from an unsecure source changes sign
Tainted size of variable length
array

Size of the variable-length array (VLA) is from an unsecure source
and may be zero, negative, or too large

Tainted string format Input format argument is from an unsecure source
Use of externally controlled
environment variable

Value of environment variable from an unsecure source

Use of tainted pointer Pointer from an unsecure source may be NULL or point to unknown
memory

Good Practice Defects

Name Description
Delete of void pointer delete operates on a void* pointer pointing to an object
Hard coded buffer size Size of memory buffer is a numerical value instead of symbolic

constant
Hard coded loop boundary Loop boundary is a numerical value instead of symbolic constant
Unused parameter Function prototype has parameters not read or written in function

body
Use of setjmp/longjmp setjmp and longjmp cause deviation from normal control flow

 Analysis Results

13-13

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/arrayaccesswithtaintedindex.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/commandexecutedfromexternallycontrolledpath.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/commandexecutedfromexternallycontrolledpath.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofexternallycontrolledcommand.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofexternallycontrolledcommand.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hostchangeusingexternallycontrolledelements.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hostchangeusingexternallycontrolledelements.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/libraryloadedfromexternallycontrolledpath.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/libraryloadedfromexternallycontrolledpath.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loopboundedwithtaintedvalue.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loopboundedwithtaintedvalue.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/memoryallocationwithtaintedsize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/memoryallocationwithtaintedsize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/pointerdereferencewithtaintedoffset.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/pointerdereferencewithtaintedoffset.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/tainteddivisionoperand.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedmodulooperand.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintednullornonnullterminatedstring.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintednullornonnullterminatedstring.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsignchangeconversion.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsizeofvariablelengtharray.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsizeofvariablelengtharray.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedstringformat.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofexternallycontrolledenvironmentvariable.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofexternallycontrolledenvironmentvariable.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useoftaintedpointer.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/deleteofvoidpointer.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hardcodedbuffersize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hardcodedloopboundary.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unusedparameter.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofsetjmplongjmp.html

Programming Defects

Name Description
Bad file access mode or status Access mode argument of function in fopen or open group is

invalid
Call to memset with
unintended value

memset or wmemset used with possibly incorrect arguments

Copy of overlapping memory Source and destination arguments of a copy function have
overlapping memory

Exception caught by value catch statement accepts an object by value
Exception handler hidden by
previous handler

catch statement is not reached because of an earlier catch
statement for the same exception

Improper array initialization Incorrect array initialization when using initializers
Incorrect pointer scaling Implicit scaling in pointer arithmetic might be ignored
Invalid assumptions about
memory organization

Address is computed by adding or subtracting from address of a
variable

Invalid va_list argument Variable argument list used after invalidation with va_end or not
initialized with va_start or va_copy

Modification of internal buffer
returned from nonreentrant
standard function

Function attempts to modify internal buffer returned from a
nonreentrant standard function

Overlapping assignment Memory overlap between left and right sides of an assignment
Possible misuse of sizeof Use of sizeof operator can cause unintended results
Possibly unintended evaluation
of expression because of
operator precedence rules

Operator precedence rules cause unexpected evaluation order in
arithmetic expression

Standard function call with
incorrect arguments

Argument to a standard function does not meet requirements for
use in the function

Use of memset with size
argument zero

Size argument of function in memset family is zero

Variable length array with
nonpositive size

Size of variable-length array is zero or negative

Writing to const qualified
object

Object declared with a const qualifier is modified

R2015b

13-14

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/badfileaccessmodeorstatus.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calltomemsetwithunintendedvalue.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calltomemsetwithunintendedvalue.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyofoverlappingmemory.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/exceptioncaughtbyvalue.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/exceptionhandlerhiddenbyprevioushandler.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/exceptionhandlerhiddenbyprevioushandler.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/improperarrayinitialization.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incorrectpointerscaling.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invalidassumptionsaboutmemoryorganization.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invalidassumptionsaboutmemoryorganization.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invalidva_listargument.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/overlappingassignment.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblemisuseofsizeof.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/standardfunctioncallwithincorrectarguments.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/standardfunctioncallwithincorrectarguments.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofmemsetwithsizeargumentzero.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofmemsetwithsizeargumentzero.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/variablelengtharraywithnonpositivesize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/variablelengtharraywithnonpositivesize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoconstqualifiedobject.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoconstqualifiedobject.html

Resource Management Defects

Name Description
Closing a previously closed
resource

Function closes a previously closed stream

Resource leak File stream not closed before FILE pointer scope ends or pointer is
reassigned

Use of previously closed
resource

Function operates on a previously closed stream

Writing to read-only resource File opened earlier as read-only is modified

 Analysis Results

13-15

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/closingapreviouslyclosedresource.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/closingapreviouslyclosedresource.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/resourceleak.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofpreviouslyclosedresource.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofpreviouslyclosedresource.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoreadonlyresource.html

Security Defects

Name Description
Deterministic random output
from constant seed

Seeding routine uses a constant seed making the output
deterministic

Execution of a binary from a
relative path can be controlled
by an external actor

Command with relative path is vulnerable to malicious attack

File access between time of
check and use (TOCTOU)

File/directory may have changed state due to access race

File manipulation after chroot()
without chdir(“/”)

Path-related vulnerabilities for file manipulated after call to chroot

Function pointer assigned with
absolute address

Constant expression is used as function address is vulnerable to
code injection

Incorrect order of network
connection operations

Socket is not correctly established due to bad order of connection
steps or missing steps

Load of library from a relative
path can be controlled by an
external actor

Library loaded with relative path is vulnerable to malicious attacks

Mismatch between data length
and size

Data size argument is not computed from actual data length

Missing case for switch
condition

Default case is missing and may be reached

Predictable random output
from predictable seed

Seeding routine uses a predictable seed making the output
predictable

Sensitive data printed out Function prints out sensitive data
Sensitive heap memory not
cleared before release

Sensitive data not cleared or released by memory routine

Umask used with chmod-style
arguments

Unsafe argument to umask allows external user too much control

Uncleared sensitive data in
stack

Variable in stack is not cleared and contains sensitive data

Unsafe standard encryption
function

Function is not reentrant or uses a risky encryption algorithm

Unsafe standard function Function unsafe for security-related purposes
Use of dangerous standard
function

Dangerous functions cause possible buffer overflow in destination
buffer

Vulnerable path manipulation Path argument with /../, /abs/path/, or other unsecure
elements

Vulnerable permission
assignments

Argument gives read/write/search permissions to external users

Vulnerable pseudo-random
number generator

Using a cryptographically weak pseudo-random number generator

R2015b

13-16

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/fileaccessbetweentimeofcheckandusetoctou.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/fileaccessbetweentimeofcheckandusetoctou.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/filemanipulationafterchrootwithoutchdir.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/filemanipulationafterchrootwithoutchdir.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/functionpointerassignedwithabsoluteaddress.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/functionpointerassignedwithabsoluteaddress.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incorrectorderofnetworkconnectionoperations.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incorrectorderofnetworkconnectionoperations.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/mismatchbetweendatalengthandsize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/mismatchbetweendatalengthandsize.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingcaseforswitchcondition.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingcaseforswitchcondition.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/sensitivedataprintedout.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/sensitiveheapmemorynotclearedbeforerelease.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/sensitiveheapmemorynotclearedbeforerelease.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/umaskusedwithchmodstylearguments.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/umaskusedwithchmodstylearguments.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unclearedsensitivedatainstack.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unclearedsensitivedatainstack.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsafestandardencryptionfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsafestandardencryptionfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsafestandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepathmanipulation.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepermissionassignments.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepermissionassignments.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepseudorandomnumbergenerator.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepseudorandomnumbergenerator.html

Name Description
Use of non-secure temporary
file

Temporary generated file name is unsecure

Use of obsolete standard
function

Obsolete routines can cause security vulnerabilities and/or
portability issues

Object-Oriented Defects

Name Description
*this not returned in
copy assignment operator

operator= method does not return a pointer to the current object

Base class assignment operator
not called

Copy assignment operator does not call copy assignment operators
of base subobjects

Base class destructor not
virtual

Class cannot behave polymorphically for deletion of derived class
objects

Copy constructor not called in
initialization list

Copy constructor does not call copy constructors of some members
or base classes

Incompatible types prevent
overriding

Derived class method hides a virtual base class method instead of
overriding it

Missing explicit keyword Constructor missing the explicit specifier
Missing virtual inheritance A base class is inherited both virtually and non-virtually in the same

hierarchy
Member not initialized in
constructor

Constructor does not initialize some members of a class

Object slicing Derived class object passed by value to function with base class
parameter

Partial override of overloaded
virtual functions

Class overrides a fraction of the inherited virtual functions with a
given name

Return of non const handle to
encapsulated data member

Method returns pointer or reference to internal member of object

Self assignment not tested in
operator

Copy assignment operator does not test for self-assignment

 Analysis Results

13-17

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofnonsecuretemporaryfile.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofnonsecuretemporaryfile.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofobsoletestandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofobsoletestandardfunction.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/thisnotreturnedincopyassignmentoperator.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/thisnotreturnedincopyassignmentoperator.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassassignmentoperatornotcalled.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassassignmentoperatornotcalled.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassdestructornotvirtual.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassdestructornotvirtual.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incompatibletypespreventoverriding.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incompatibletypespreventoverriding.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingexplicitkeyword.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingvirtualinheritance.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/membernotinitializedinconstructor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/membernotinitializedinconstructor.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/objectslicing.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/partialoverrideofoverloadedvirtualfunctions.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/partialoverrideofoverloadedvirtualfunctions.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/returnofnonconsthandletoencapsulateddatamember.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/returnofnonconsthandletoencapsulateddatamember.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/selfassignmentnottestedinoperator.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/selfassignmentnottestedinoperator.html

Updated Defects

Name Status Additional Information
Integer conversion overflow

Integer overflow

Invalid use of standard library routine

Shift operation overflow

Sign change integer conversion overflow

Shift of a negative value

Unsigned integer conversion overflow

Unsigned integer overflow

Updated The defects do not appear on computations
involving constants only. For instance, the
assignment unsigned int var = -1; does
not show a Sign change integer conversion
overflow defect.

Format string specifiers and arguments
mismatch

New
category

Moved from Other to Programming

Invalid use of standard library routine New
category

Moved from Other to Programming

Assertion New
category

Moved from Other to Good practice

Large pass-by-value argument New
category

Moved from Other to Good practice

Line with more than one statement New
category

Moved from Other to Good practice

R2015b

13-18

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/integerconversionoverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/integeroverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invaliduseofstandardlibraryroutine.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/shiftoperationoverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/shiftofanegativevalue.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsignedintegerconversionoverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsignedintegeroverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/formatstringspecifiersandargumentsmismatch.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/formatstringspecifiersandargumentsmismatch.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invaliduseofstandardlibraryroutine.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/assertion.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/largepassbyvalueargument.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/linewithmorethanonestatement.html

Reviewing Results

Results in Real Time: View results as they are produced
Previously, you could not review results until the analysis was complete. For local analyses in R2015b,
you can start reviewing results as soon as they are available.

When you run a local analysis, a new button appears on the toolbar.

When results are available, this button becomes active.

To start reviewing available results, click this button. The button reactivates every time results are
available. To load additional results, click the button again.

When the analysis is complete, to load all your results, click the button.

For more information, see Open Results.

Improved Eclipse Support: View results embedded in source code and
context-sensitive help
In R2015b, the following improvements have been made to the Polyspace plugin for Eclipse:

• Polyspace Bug Finder highlights defects in your source code in the following ways:

• For defects, an ! mark appears before the line number on the left. For coding rule violations, a
 or mark appears before the line number on the left.

• The operation containing the defect has a wavy red underlining.
• For defects, a icon appears in the overview ruler to the right of the line containing the

defect. For coding rule violations, a icon appears in the overview ruler to the right of the line
containing the rule violation. If you place your cursor on the icon, a tooltip shows a brief
description of the defect or coding rule.

In addition, a icon appears at the top of the overview ruler. If you place your cursor on the
icon, a tooltip states the total number of defects and coding rule violations in the file.

Using these indicators, you can track defects in your source code more easily. For more
information, see Review and Fix Results.

• When you select a result in the Results Summary - Bug Finder view, the Result Details view

displays additional information about the result. In the Result Details view, if you click the
button next to the result name, you can see a brief description and examples of the result. For
defects, you can sometimes see the risk associated with not fixing the defect and the most
common fix for the defect.

 Reviewing Results

13-19

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/open-results.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/review-and-comment-results_bty8h_s-15.html

• You can switch to a Polyspace perspective that shows only the information relevant to a Polyspace
Bug Finder analysis. To open the perspective, select Window > Open Perspective > Other. In
the Open Perspective dialog box, select Polyspace.

Once you switch to the Polyspace perspective, the source code shows the Polyspace Bug Finder
defects only in this perspective.

• You can view results as they are produced instead of waiting till end of the analysis.

•
When you begin an analysis, a icon appears next to the button.

• If results are available, the icon turns to . Click the icon to load available results.
• With your results open, if additional results are available, the icon is still visible. Click the

 icon to load all available results.

Defects Classified by Impact: Prioritize defect review by using the
impact attribute assigned to each defect type
You can prioritize your result review using an Impact attribute assigned to the defects. The attribute
is assigned based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.
• Certainty, or the rate of false positives.

You can filter results on the Results Summary pane using the Impact attribute. Or, you can obtain a
graphical visualization of the Defect distribution by impact on the Dashboard pane. For more
information, see Classification of Defects by Impact.

Improved Review Capability: View result details and add review
comments in one window
In R2015b, the Check Details pane is renamed as Result Details. On this pane, you can now enter
review information such as Classification, Status, and comments. For more information, see Review
and Fix Results.

R2015b

13-20

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/result-grouping-by-impact.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/review-and-comment-results_bty8g0k-1_1.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/review-and-comment-results_bty8g0k-1_1.html

Previously, to enter review information while keeping the Results Summary pane collapsed, you
used the Check Review pane. This pane has been removed.

Enhanced Review Scope: Filter coding rule violations from display in
one click
Previously, using custom options on the Show menu, you suppressed only defects and code metrics (if
they fell below a certain threshold). In R2015b, you can suppress a certain number or percentage of
coding rule violations from the display. You use custom options in the Show menu on the Results
Summary pane. You can:

• Suppress violations of coding rules that are not relevant.
• Focus your results review by seeing only a certain number of coding rule violations in your display.
• Predefine a percentage of coding rule violations that you intend to review and view only that

percentage in your analysis results.

You define an option on the Show menu only once. The option is available for one-click use every time
that you open your results. For information on how to create an option to suppress coding rule
violations, see Suppress Certain Rules from Display in One Click.

Configuration Associated with Result Not Opened by Default
In R2015b, when you open your result, the Configuration pane does not automatically display a
read-only form of the associated configuration.

To view the configuration associated with the result, select the link View configuration for results
on the Dashboard pane. If a corresponding project is open in the Project Browser, you can also
right-click the Results node in the project and select Open Configuration.

Improvements in Report Templates
In R2015b, the major improvements in report templates include the following:

• The summary chapter in the template BugFinder now contains a breakup of Polyspace Bug
Finder results by file, in addition to the project-wide summary.

• The summary now shows the total number of results along with the number of results reviewed.
• Instead of filenames, absolute paths to files appear in the reports.
• If you check for coding rules, the appendix about coding rules configuration states all rules along

with the information whether they were enabled or disabled. Previously, the appendix only stated
the enabled rules.

• The reports display the impact attribute associated with a defect.

For more information on this attribute, see Classification of Defects by Impact.

For more information on templates, see Report template (C/C++).

XML and RTF report formats removed
The formats XML and RTF for report generation are not available from R2016a onwards. If you
generated reports using one of these formats, use an alternative format instead.

 Reviewing Results

13-21

https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/apply-coding-rule-violation-filters_bt4qyd3.html#buxivt8-1
https://www.mathworks.com/help/releases/R2015b/bugfinder/ug/result-grouping-by-impact.html
https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/report-template-1.html

For more information, see Output format (C/C++).

R2015b

13-22

https://www.mathworks.com/help/releases/R2015b/bugfinder/ref/output-format-.html

R2015a

Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

14

Analysis Setup

Simplified workflow for project setup and results review with a unified
user interface
In R2015a, the Project and Results Manager perspectives have been unified. You can run the analysis
and review results without switching between two perspectives.

The unification has resulted in the following major changes:

• After an analysis, the result opens automatically.

Previously, after an analysis, you had to double-click the result in the Project Browser to open
your new results.

• You can have any of the panes open in the unified interface.

Previously, you could open the following panes only in one of the two perspectives.

Project Manager Results Manager
• Project Browser: Set up project.
• Configuration: Specify analysis options

for your project.
• Output Summary: Monitor progress of

analysis.
• Run Log: Find information about an

analysis.

• Results Summary: View Polyspace
results.

• Source: View read-only form of source
code color coded with Polyspace results.

• Check Details: View details of a particular
result.

• Results Properties: Same as Run Log,
but associated with results instead of a
project. This pane has been removed.

To open the log associated with a result,
with the results open, select Window >
Show/Hide View > Run Log.

• Settings: Same information as
Configuration, but associated with results
instead of a project. This pane has been
removed.

To open the configuration associated with a
result, with the results open, select
Window > Show/Hide View >
Configuration.

Search improvements in the user interface
In R2015a, the Search pane allows you to search for a string in various panes of the user interface.

To search for a string in the new user interface:

1 If the Search pane is not visible, open it. Select Window > Show/Hide View > Search.

R2015a

14-2

2 Enter your string in the search box.
3 From the drop-down list beside the box, select names of panes you want to search.

The Search pane consolidates the previously available search options.

Option to specify program termination functions
In R2015a, you can specify functions that behave like the exit function and terminate your program.

• At the command line, use the flag -termination-functions.
• In the user interface, on the Configuration pane, select Advanced Settings. Enter -

termination-functions in the Other field.

For more information, see -termination-functions.

Support for GCC 4.8
Polyspace now supports the GCC 4.8 dialect for C and C++ projects.

To allow GCC 4.8 extensions in your Polyspace Bug Finder analysis, set the Target & Compiler >
Dialect option to gnu4.8.

For more information, see Dialect (C) and Dialect (C++).

Polyspace plug-in for Simulink improvements
In R2015a, there are three improvements to the Polyspace Simulink plug-in.

Integration with Simulink projects

You can now save your Polyspace results to a Simulink project. Using this feature, you can organize
and control your Polyspace results alongside your model files and folders.

To save your results to a Simulink project:

1 Open your Simulink project.
2 From your model, select Code > Polyspace > Options.
3 In the Polyspace parameter configuration tab, select the Save results to Simulink project

option.

For more information, see Save Results to a Simulink Project.

Back-to-model available when Simulink is closed

In the Polyspace plug-in for Simulink, the back-to-model feature now works even when your model is
closed. When you click a link in your Polyspace results, MATLAB opens your model and highlights the
related block.

Note This feature works only with Simulink R2013b and later.

For more information about the back-to-model feature, see Review Generated Code Results.

 Analysis Setup

14-3

https://www.cplusplus.com/reference/cstdlib/exit/
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/terminationfunctions.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/dialect-1.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/manage-results.html#buqx2wl-1
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/view-results-in-the-polyspace-environment.html

Polyspace binaries being removed
The following binaries will be removed in a future release. The binaries to use are located in
matlabroot/polyspace/bin. You get a warning if you run them.

Binary name Use instead
polyspace-rl-manager.exe polyspace-server-settings.exe
polyspace-spooler.exe polyspace-job-monitor.exe
polyspace-ver.exe polyspace-bug-finder-nodesktop -ver

Import Visual Studio project being removed
The Tools > Import Visual Studio project will be removed in a future release. Instead, use the
Create from build system option during new project creation. For more information, see Create
Project Automatically.

R2015a

14-4

https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/create-a-configuration-from-your-build-environment.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/create-a-configuration-from-your-build-environment.html

Analysis Results

Changes to Bug Finder defects
Defect R2015a change
Invalid use of floating point
operation Off by default.

Line with more than one
statement

Off by default.

Invalid use of = (assignment)
operator

On by default for handwritten code (analyses started at the
command-line or Polyspace environment).

Off by default for generated code (analyses started from the
Simulink plug-in).

Invalid use of == (equality)
operator

On by default for handwritten code.

Off by default for generated code.
Missing null in string array On by default for handwritten code.

Off by default for generated code.
Partially accessed array On by default for handwritten code.

Off by default for generated code.
Variable shadowing On by default for handwritten code.

Off by default for generated code.
Write without further read On by default for handwritten code.

Off by default for generated code.
Wrong type used in sizeof On by default for handwritten code.

Off by default for generated code.

Improvements in coding rules checking
MISRA C:2004 and MISRA AC AGC

Rule Number Effect More Information
Rule 12.6 More results on noncompliant #if

preprocessor directives.
Fewer results for variables cast to
effective Boolean types.

MISRA C:2004 Rules — Chapter 12:
Expressions

Rule 12.12 Fewer results when converting to an
array of float

MISRA C:2004 Rules — Chapter 12:
Expressions

 Analysis Results

14-5

https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseoffloatingpointoperation.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseoffloatingpointoperation.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/linewithmorethanonestatement.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/linewithmorethanonestatement.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofassignmentoperator.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofassignmentoperator.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofequalityoperator.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofequalityoperator.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/missingnullinstringarray.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/partiallyaccessedarray.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/variableshadowing.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/writewithoutfurtherread.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/wrongtypeusedinsizeof.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1

MISRA C:2012

Rule Number Effect More Information
Rules 10.3 Fewer results on enumeration

constants when the type of the
constant is a named enumeration type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.3

Rule 10.4 Fewer results on enumeration
constants when the type of the
constant is a named enumeration type.
Fewer results for casts to user-defined
effective Boolean types.

MISRA C:2012 Rule 10.4

Rule 10.5 Fewer results on enumeration
constants when the type of the
constant is a named enumeration type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.5

Rule 12.1 More results on expressions with
sizeof operator and on expressions
with ? operators.
Fewer results on operators of the
same precedence and in
preprocessing directives.

MISRA C:2012 Rule 12.1

Rule 14.3 No results for non-controlling
expressions.

MISRA C:2012 Rule 14.3

MISRA C++:2008

Rule Number Effect More Information
Rule 5-0-3 Fewer results on enumeration

constants when the type of the
constant is the enumeration type.

MISRA C++ Rules — Chapter 5

Rule 6-5-1 Fewer results on compliant vector
variable iterators.

MISRA C++ Rules — Chapter 6

Rule 14-8-2 Fewer results for functions contained
in the Files and folders to ignore (C+
+) option.

MISRA C++ Rules — Chapter 14

Rule 15-3-2 Fewer results for user-defined return
statements after a try block.

MISRA C++ Rules — Chapter 15

R2015a

14-6

https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule10.3.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule10.4.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule10.5.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule12.1.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule14.3.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-7
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-8
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-15
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-16

Reviewing Results

Code complexity metrics available in user interface
In R2015a, code complexity metrics can be viewed in the Polyspace user interface. For more
information, see Code Metrics. Previously, this information was available only in the Polyspace
Metrics web interface.

In the user interface, you can:

• Specify a limit for the value of a metric. If the metric value for your source exceeds this limit, the
metric appears red in Results Summary.

• Comment and justify the value of a metric. If a metric value exceeds specified limits and appears
red, you can add a comment with the rationale.

Using Polyspace results in this way, you can enforce coding standards across your organization. For
more information, see Review Code Metrics.

Reducing the complexity of your code improves code readability, reduces the possibility of coding
errors, and allows more precise Polyspace analysis.

Context-sensitive help for code complexity metrics, MISRA-C:2012,
and custom coding rules
In R2015a, context-sensitive help is available in the user interface for code metrics results, MISRA
C:2012 rule violations, and custom coding rule violations.

To access the contextual help, see Getting Help.

For information about these results, see:

• Code Metrics
• MISRA C:2012 Directives and Rules
• Custom Coding Rules

Review of latest results compared to the last run
In R2015a, you can review only new results compared to the previous run.

If you rerun your analysis, the new results are displayed with an asterisk (*) against them on the
Results Summary pane. To display only these results, select the New results box.

If you make changes in your source code, you can use this feature to see only the results introduced
due to those changes. You can avoid reviewing the results in your existing source code.

Simplified results infrastructure
Polyspace results folders are reorganized and simplified. Files have been removed, combined,
renamed, or moved. The infrastructure changes do not change the analysis results that you see in the
Polyspace environment.

 Reviewing Results

14-7

https://www.mathworks.com/help/releases/R2015a/bugfinder/metrics-reference.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/review-code-metrics.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/gs/getting-help.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/metrics-reference.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/misra-c-2012-reference.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/custom-coding-rules.html

Some important changes and file locations:

• The main results file is now encrypted and renamed ps_results.psbf. You can view results only
in the Polyspace environment.

• The log file, Polyspace_R2015a_project_date-time.log has not changed.

For more information, see Results Folder Contents.

Default statuses to justify results
Polyspace Bug Finder results use certain statuses to calculate the number of justified results in
Polyspace Metrics.

In R2015a, the default statuses that mark results as justified are:

• Justified — Previously called Justify, renamed in R2015a.
• No action planned — Existing status added to justified list in R2015a.

You can change which statuses mark results as justified from the Polyspace preferences. For more
information, see Define Custom Review Status.

Filters to limit display of results
In R2015a, you can use the Show menu on the Results Summary pane to suppress certain
Polyspace Bug Finder results from display.

• To suppress code complexity metrics from display, select Show > Defects & Rules.
• Create your own options on the Show menu. Select Tools > Preferences and create new options

through the Review Scope tab.

For more information, see Limit Display of Defects.

R2015a

14-8

https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/files-in-the-results-folder.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/define-custom-review-status.html
https://www.mathworks.com/help/releases/R2015a/bugfinder/ug/suppress-defects-from-display.html

R2014b

Version: 1.2

New Features

Bug Fixes

Compatibility Considerations

15

Analysis Setup

Parallel compilation for faster analysis
Starting in R2014b, Polyspace Bug Finder can run the compilation phase of your analysis in parallel
on multiple processors. The software detects available processors and uses them to compile different
source files in parallel.

Previously, the software ran post-compilation phases in parallel but compiled the source files
sequentially. Starting in R2014b, the software can use multiple processors for the entire analysis
process.

To explicitly specify the number of processors, use the command-line option -max-processes. For
more information, see -max-processes.

Support for Mac OS
You can install and run Polyspace on Mac OS X. Polyspace is supported for Mac OS 10.7.4+, 10.8, and
10.9.

You can use Polyspace Metrics on Safari and set up your Mac as a Metrics server. However, if you
restart your Mac machine that is setup as a Metrics server, you must restart the Polyspace server
daemon.

Support for C++11
Polyspace can now fully analyze C++ code that follows the ISO®/IEC 14882:2011 standard, also
called C++11.

Use two new analysis options when analyzing C++11 code. On the Target & Compiler pane, select:

• C++11 extensions to allow the standard C++11 libraries and functions during your analysis.
• Block char 16/32_t types to not allow char16_t or char32_t types during the analysis.

For more information, see C++11 Extensions (C++) and Block char16/32_t types (C++).

Code editor in Polyspace interface
In R2014b, you can edit your source files inside the Polyspace user interface.

• In the Project Manager perspective, on the Project Browser tree, double-click your source file.
• In the Results Manager perspective, right-click the Source pane and select Open Source File.

Your source files appear on a Code Editor tab. On this tab, you can edit your source files and save
them.

Ignore files and folders during analysis
You can now use the analysis option Files and folders to ignore (command line -includes-to-
ignore) to ignore files and folders during defect checking. Previously, the Files and folders to

R2014b

15-2

https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/maxprocesses.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/c-11-extensions-c.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/block-char1632-t-types-c.html

ignore option (command line -includes-to-ignore) ignored files and folders during coding rule
checking. In R2014b, Polyspace Bug Finder uses this option to ignore specified files or folders for
coding rule checking AND defect analysis.

For more information, see Files and folders to ignore (C) or Files and folders to ignore (C++).

Simulink plug-in support for custom project files
With the Polyspace plug-in for Simulink, you can now use a project file to specify the analysis options.

On the Polyspace pane of the Configuration Parameters window, with the Use custom project file
option you can enter a path or browse for a .psprj project file.

For more information, see Configure Polyspace Analysis Options.

TargetLink support updated
The Polyspace plug-in for Simulink now supports TargetLink 3.4 and 3.5. Older versions of TargetLink
are no longer supported.

For more information, see TargetLink Considerations.

AUTOSAR support added
In R2013b, the Polyspace plug-in for Simulink added support for AUTOSAR generated code with
Embedded Coder. If you use autosar.tlc as your System target file for code generation,
Polyspace can analyze this generated code. Polyspace uses the same default analysis options and
parameters as Embedded Coder.

For more information, see Embedded Coder Considerations.

Remote launcher and queue manager renamed
Polyspace renamed the remote launcher and the queue manager.

Previous name New name More information
polyspace-rl-manager polyspace-server-settings Only the binary name has changed.

The interface title, Metrics and
Remote Server Settings, is
unchanged.

polyspace-spooler polyspace-job-monitor The binary and the interface titles
have changed. Interface labels have
changed in the Polyspace interface
and its plug-ins.

Queue Manager or Spooler Job Monitor

pslinkfun('queuemanager') pslinkfun('jobmonitor') See pslinkfun

Compatibility Considerations
If you use the old binaries or functions, you receive a warning.

 Analysis Setup

15-3

https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/files-and-folders-to-ignore_bt2qz__.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/configuring-polyspace-project.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/targetlink-considerations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/embedded-coder-considerations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/pslinkfun.html

Improved global menu in user interface
The global menu in the Polyspace user interface has been updated. The following table lists the
current location for the existing global menu options.

Goal Prior to R2014b R2014b
Open the Polyspace Metrics
interface in your web browser.

File > Open Metrics Web
Interface

Metrics > Open Metrics

Upload results from the
Polyspace user interface to
Polyspace Metrics.

File > Upload in Polyspace
Metrics repository

Metrics > Upload to Metrics

Update results stored in
Polyspace Metrics with your
review comments and
justifications.

File > Save in Polyspace
Metrics repository

Metrics > Save comments to
Metrics

Generate a report from results
after analysis.

Run > Run Report > Run
Report

Reporting > Run Report

Open a generated report. Run > Run Report > Open
Report

Reporting > Open Report

Import review comments from a
previous analysis.

Review > Import Tools > Import Comments

Specify code generator for
generated code.

Review > Code Generator
Support

Tools > Code Generator
Support

Specify settings that apply to
every Polyspace project.

Options > Preferences Tools > Preferences

Specify settings for remote
analysis.

Options > Metrics and
Remote Server Settings

Metrics > Metrics and
Remote Server Settings

Improved Project Manager perspective
The following changes have been made in the Project Manager perspective:

• The Progress Monitor tab does not exist anymore. Instead, after you start an analysis, you can
view its progress on the Output Summary tab.

• In the Project Browser, projects appear sorted in alphabetical order instead of order of creation.
• On the Configuration pane, the Interactive option has been removed from the graphical

interface. To use the interactive mode, use the -interactive flag at the command line, or in the
Advanced Settings > Other text field. For more information, see -interactive

Polyspace binaries being removed
The following binaries will be removed in a future release. Unless otherwise noted, the binaries to use
are located in matlabroot/polyspace/bin.

R2014b

15-4

https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/interactive.html

Binary name What
happens

Use instead

polyspace-rl-manager.exe Warning polyspace-server-settings.exe
polyspace-spooler.exe Warning polyspace-job-monitor.exe
polyspace-ver.exe Warning polyspace-bug-finder-nodesktop -ver
setup-remote-launcher.exe Warning matlabroot/toolbox/polyspace /

psdistcomp/bin/setup-polyspace-cluster

Import Visual Studio project being removed
The File > Import Visual Studio project will be removed in a future release. Instead, use the
Create from build system option during New Project creation. For more information, see Create
Projects Automatically from Your Build System.

 Analysis Setup

15-5

https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/create-a-configuration-from-your-build-environment.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/create-a-configuration-from-your-build-environment.html

Analysis Results

Support for MISRA C:2012
Polyspace can now check your code against MISRA C:2012 directives and coding rules. To check for
MISRA C:2012 coding rule violations:

1 On the Configuration pane, select Coding Rules.
2 Select Check MISRA C:2012.
3 The MISRA C:2012 guidelines have different categories for handwritten and automatically

generated code.

If you want to use the settings for automatically generated code, also select Use generated
code requirements.

For more information about supported rules, see MISRA C:2012 Coding Directives and Rules.

Additional concurrency issue detection (deadlocks, double locks, and
others)
Data race errors

The following defects deal with unprotected access of shared variables by multiple tasks.

Defect name Status More information
Race conditions Removed Replaced by Data race and Data race

including atomic operations.
Data race New Checks for unprotected operations on variables

shared by multiple tasks. This check applies to non-
atomic operations only.

Data race including atomic
operations

New Checks for unprotected operations on variables
shared by multiple tasks. This check applies to all
operations, including atomic ones.

Locking errors

The following defects deal with incorrect design of critical sections. For multitasking analysis, to
mark a section of code as a critical section, you must place it between two function calls. A lock
function begins a critical section. An unlock function ends a critical section.

Defect name Status More information
Deadlock New Checks whether the sequence of calls to lock functions

is such that two tasks block each other.
Missing lock New Checks whether an unlock function has a corresponding

lock function.
Missing unlock New Checks whether a lock function has a corresponding

unlock function.

R2014b

15-6

https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/misra-c2012-coding-rules.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/deadlock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missinglock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missingunlock.html

Defect name Status More information
Double lock New Checks whether a lock function is called twice in a task

without an unlock function being called in between.
Double unlock New Checks whether an unlock function is called twice in a

task without a lock function being called in between.

For more information, see:

• Set Up Multitasking Analysis
• Review Concurrency Defects

New and updated defect checkers
Defect name Status More information
Dead code Updated Checks for non-executed code. No longer checks for:

• if conditions that are always true without a
corresponding else. This check is covered by the
Useless if defect.

• Code following control-flow statements such as
break, return, or goto defect. This check is
covered by the Unreachable code defect.

Useless if New Checks for if-conditions that are always true.
Unreachable code New Checks for code following control-flow statements

such as break, return, or goto.
Declaration mismatch Updated Updated for #pragma packing statements.
Race conditions Removed Replaced by Data race and Data race including

atomic operations.
Data race New Checks for unprotected operations on variables

shared by multiple tasks. This check applies to non-
atomic operations only.

Data race including atomic
operations

New Checks for unprotected operations on variables
shared by multiple tasks. This check applies to all
accesses, including atomic ones.

Deadlock New Checks whether the sequence of calls to lock
functions is such that two tasks block each other.

Missing lock New Checks whether an unlock function has a
corresponding lock function.

Missing unlock New Checks whether a lock function has a corresponding
unlock function.

Double lock New Checks whether a lock function is called twice in a
task without an unlock function being called in
between.

 Analysis Results

15-7

https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doublelock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doubleunlock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/setup-multitasking-analysis.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/review-concurrency-defects.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/deadcode.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/uselessif.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/unreachablecode.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/uselessif.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/unreachablecode.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/declarationmismatch.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/deadlock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missinglock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missingunlock.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doublelock.html

Defect name Status More information
Double unlock New Checks whether an unlock function is called twice in

a task without a lock function being called in
between.

R2014b

15-8

https://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doubleunlock.html

Reviewing Results

Context-sensitive help for analysis options and defects
Contextual help is available for analysis options in the Polyspace interface and its plug-ins. To view
the contextual help for analysis options:

1 Hover your cursor over an analysis option in the Configuration pane.
2 Inside the tooltip, select the “More Help” link.

The documentation for that analysis option appears in a dockable window.

Contextual help is available for defects in the Polyspace interface. To view the contextual help:

1 In the Results Manager perspective, select a defect from the Results Summary.
2

Inside the Check Details pane, select .

The documentation for that Bug Finder defect appears in a dockable window.

For more information, see Getting Help.

Improved Results Manager perspective
The following changes have been made in the Results Manager perspective:

• To group your defects, use the Group by menu on the Results Summary pane.

• To leave your defects ungrouped, instead of List of Checks, select Group by > None.
• To group defects by category, instead of Checks by Family, select Group by > Family.
• To group defects by file and function, instead of Checks by File/Function, select Group by >

File.
• On the Source pane:

• If a color appears on a brace enclosing a code block, double-click the brace to highlight the
block. If no color appears, click the brace once to highlight the code block.

• If a code block is deactivated due to conditional compilation, it appears gray.

Error mode removed from coding rules checking
In R2014b, the Error mode has been removed from coding rules checking. Therefore, coding rule
violations cannot stop an analysis.

Compatibility Considerations
For existing coding rules files, coding rules that use the keyword error are treated in the same way
as that with keyword warning. For more information on warning, see Format of Custom Coding
Rules File.

 Reviewing Results

15-9

https://www.mathworks.com/help/releases/R2014b/bugfinder/gs/getting-help.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html
https://www.mathworks.com/help/releases/R2014b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html

R2014a

Version: 1.1

New Features

Bug Fixes

Compatibility Considerations

16

Analysis Setup

Automatic project setup from build systems
In R2014a, you can set up a Polyspace project from build automation scripts that you use to build
your software application. The automatic project setup runs your automation scripts to determine:

• Source files
• Includes
• Target & Compiler options

To set up a project from your build automation scripts:

• At the command line: Use the polyspace-configure command. For more information, see
Create Project from DOS and UNIX Command Line.

• In the user interface: When creating a new project, in the Project – Properties window, select
Create from build command. In the following window, enter:

• The build command that you use.
• The folder from which you run your build command.
• Additional options. For more information, see Create Project in User Interface.

Click . In the Project Browser, you see your new Polyspace project with the required
source files, include folders, and Target & Compiler options.

• On the MATLAB command line: Use the polyspaceConfigure function. For more information,
see Create Project from MATLAB Command Line.

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects
Polyspace supports two additional dialects: Microsoft Visual Studio C++ 2012 and GNU 4.7. If your
code uses language extensions from these dialects, specify the corresponding analysis option in your
configuration. From the Target & Compiler > Dialect menu, select:

• gnu4.7 for GNU 4.7
• visual11.0 for Microsoft Visual Studio C++ 2012

For more information, see Dialects for C or Dialects for C++.

Simplification of coding rules checking
In R2014a, the Error mode has been removed from coding rules checking. This mode applied only to:

• The option Custom for:

• Check MISRA C rules
• Check MISRA AC AGC rules
• Check MISRA C++ rules
• Check JSF C++ rules

R2014a

16-2

https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/create-a-configuration-from-your-build-environment.html#bt9_wgg
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/create-a-configuration-from-your-build-environment.html#bt2wd35
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/create-a-configuration-from-your-build-environment.html#bt9_wh0
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/dialect.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/dialect-1.html

• Check custom rules

The following table lists the changes that appear in coding rules checking.

Coding Rules
Feature

R2013b R2014a

New file wizard for
custom coding
rules.

For each coding rule, you can select three
results:

• Error: Analysis stops if the rule is violated.

The rule violation is displayed on the Output
Summary tab in the Project Manager
perspective.

• Warning: Analysis continues even if the rule
is violated.

The rule violation is displayed on the
Results Summary pane in the Result
Manager perspective.

• Off: Polyspace does not check for violation of
the rule.

For each coding rule, you can select two
results:

• On: Analysis continues even if the
rule is violated.

The rule violation is displayed on the
Results Summary pane in the Result
Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

Format of the
custom coding
rules file.

Each line in the file must have the syntax:

rule off|error|warning #comments

For example:

MISRA configuration - Proj1
10.5 off #don't check 10.5
17.2 error
17.3 warning

Each line in the file must have the syntax:

rule off|warning #comments

For example:

MISRA configuration - Proj1
10.5 off #don't check 10.5
17.2 warning
17.3 warning

Compatibility Considerations
For existing coding rules files that use the keyword error:

• If you run analysis from the user interface, it will be treated in the same way as the keyword
warning The analysis will not stop even if the rule is violated. The rule violation will however be
reported on the Results Summary pane.

• If you run analysis from the command line, the analysis will stop if the rule is violated.

Preferences file moved
In R2014a, the location of the Polyspace preferences file has been changed.

Operating
System

Location before R2014a Location in R2014a

Windows %APPDATA%\Polyspace %APPDATA%\MathWorks\MATLAB\R2014a\Polyspace
Linux /home/$USER/.polyspace /home/$USER/.matlab/$RELEASE/Polyspace

 Analysis Setup

16-3

For more information, see Storage of Polyspace Preferences.

Security level support for batch analysis
When creating an MDCS server for Polyspace batch analyses, you can now add additional security
levels through the MATLAB Admin Center. Using the Metrics and Remote Server Settings, the
MDCS server is automatically set to security level zero. If you want additional security for your
server, use the Admin Center button. The additional security levels require authentication by user
name, cluster user name and password, or network user name and password.

For more information, see Set MJS Cluster Security.

Interactive mode for remote analysis
In R2014a, you can select an additional Interactive mode for remote analysis. In this mode, when
you run Polyspace Bug Finder on a cluster, your local computer is tethered to the cluster through
Parallel Computing Toolbox and MATLAB Parallel Server.

• In the user interface: On the Configuration pane, under Distributed Computing, select
Interactive.

• On the DOS or UNIX command line, append -interactive to the polyspace-bug-finder-
nodesktop command.

• On the MATLAB command line, add the argument '-interactive' to the
polyspaceBugFinder function.

For more information, see Interactive.

Default text editor
In R2014a, Polyspace uses a default text editor for opening source files. The editor is:

• WordPad in Windows
• vi in Linux

You can change the text editor on the Editors tab under Options > Preferences. For more
information, see Specify Text Editor.

Support for Windows 8 and Windows Server 2012
Polyspace supports installation and analysis on Windows Server® 2012 and Windows 8.

For installation instructions, see Installation, Licensing, and Activation.

Function replacement in Simulink plug-in
The following functions have been replaced in the Simulink plug-in by the function pslinkfun. These
functions will be removed in a future release.

R2014a

16-4

https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/storage-of-polyspace-preferences.html
https://www.mathworks.com/help/releases/R2014a/mdce/set-mjs-cluster-security.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/polyspacebugfinder.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/interactive.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/specify-text-editor.html
https://www.mathworks.com/help/releases/R2014a/install/index.html

Function What
Happens?

Use This Function Instead

PolyspaceAnnotation Warning pslinkfun('annotations',...)
PolySpaceGetTemplateCFGFile Warning pslinkfun('gettemplate')
PolySpaceHelp Warning pslinkfun('help')
PolySpaceEnableCOMServer Warning pslinkfun('enablebacktomodel')
PolySpaceSpooler Warning pslinkfun('queuemanager')
PolySpaceViewer Warning pslinkfun('openresults',...)
PolySpaceSetTemplateCFGFile Warning pslinkfun('settemplate',...)
PolySpaceConfigure Warning pslinkfun('advancedoptions')
PolySpaceKillAnalysis Warning pslinkfun('stop')
PolySpaceMetrics Warning pslinkfun('metrics')

For more information, see pslinkfun

Check model configuration automatically before analysis
For the Polyspace Simulink plug-in, the Check configuration feature has been enhanced to
automatically check your model configuration before analysis. In the Polyspace pane of the Model
Configuration options, select:

• On, proceed with warnings to automatically check the configuration before analysis and
continue with analysis when only warnings are found.

• On, stop for warnings to automatically check the configuration before analysis and stop if
warnings are found.

• Off does not check the configuration before an analysis.

If the configuration check finds errors, Polyspace stops the analysis.

For more information about Check configuration, see Check Simulink Model Settings.

Data range specification support
Data range specification (DRS) is available with Polyspace Bug Finder. You can add range information
to global variables.

You can also use DRS information with Polyspace Code Prover. Similarly, you can use DRS
information from Code Prover in Bug Finder.

For more information, see Inputs & Stubbing.

Polyspace binaries being removed
The following Polyspace binaries will be removed in a future release:

• polyspace-report-generator.exe
• polyspace-results-repository.exe

 Analysis Setup

16-5

https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/pslinkfun.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/checking-simulink-model-settings.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/inputs-stubbing.html

• polyspace-spooler.exe
• polyspace-ver.exe

R2014a

16-6

Analysis Results

Classification of bugs according to the Common Weakness
Enumeration (CWE) standard
In R2014a, Polyspace Bug Finder associates CWE™ IDs with many defects. For the covered defects,
the IDs are listed in the CWE ID column on the Results Summary pane. To view the CWE ID
column, right-click the Results Summary tab and select the CWE ID column.

For more information, see Common Weakness Enumeration from Bug Finder Defects.

Additional coding rules support (MISRA-C:2004 Rule 18.2, MISRA-C++
Rule 5-0-11)
The Polyspace coding rules checker now supports two additional coding rules: MISRA C 18.2 and
MISRA C++ 5-0-11.

• MISRA C 18.2 is a required rule that checks for assignments to overlapping objects.
• MISRA C++ 5-0-11 is a required rule that checks for the use of the plain char type as anything

other than storage or character values.
• MISRA C++ 5-0-12 is a required rule that checks for the use of the signed and unsigned char

types as anything other than numerical values.

For more information, see MISRA C:2004 Coding Rules or MISRA C++ Coding Rules.

Additional analysis checkers
Polyspace Bug Finder can now check for two additional defects in C and C++:

• Wrong allocated object size for cast checks for memory allocations that are not multiples of
the pointer size.

• Line with more than one statement checks for lines that have additional statements after a
semicolon.

For more information, see Wrong allocated object size for cast and Line with more than one
statement.

Improvement of floating point precision
In R2013b, Polyspace improved the precision of floating point representation. Previously, Polyspace
represented the floating point values with intervals, as seen in the tooltips. Now, Polyspace uses a
rounding method.

For example, the analysis represents float arr = 0.1; as,

• Pre-R2013b, arr = [9.9999E^-2,1.0001E-1].
• Now, arr = 0.1.

 Analysis Results

16-7

https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/bug-finder-defects.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/misra-c-coding-rules-1.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/wrongallocatedobjectsizeforcast.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/linewithmorethanonestatement.html
https://www.mathworks.com/help/releases/R2014a/bugfinder/ref/linewithmorethanonestatement.html

Reviewing Results

Results folder appearance in Project Browser
In R2014a, the results folder appears in a simplified form in the Project Browser. Instead of a folder
containing several files, the result appears as a single file.

• Format before R2014a

• Format in R2014a

The following table lists the changes in the actions that you can perform on the results folder.

Action R2013b R2014a
Open results. In the result folder, double-click

result file with extension .psbf.
Double-click result file.

Open analysis options used for
result.

In the result folder, select options. Right-click result file and select
Open Configuration.

Open metrics page for batch
analyses if you had used the
analysis option Distributed
Computing > Add to results
repository.

In the result folder, select Metrics
Web Page.

Double-click result file.

If you had used the option
Distributed Computing > Add to
results repository, double-clicking
the results file for the first time
opens the metrics web page instead
of the Result Manager perspective.

R2014a

16-8

Action R2013b R2014a
Open results folder in your file
browser.

Navigate to results folder.

To find results folder location, select
Options > Preferences. View
result folder location on the Project
and Results Folder tab.

Right-click result file and select
Open Folder with File Manager.

Results manager improvements
• In R2014a, you can view the extent of a code block on the Source pane by clicking either its

opening or closing brace.

Note This action does not highlight the code block if the brace itself is already highlighted. The
opening brace can be highlighted, for example, with a Dead code defect for the code block.

• In R2014a, the Verification Statistics pane in the Project Manager and the Results Statistics
pane in the Results Manager have been renamed Dashboard.

On the Dashboard, you can obtain an overview of the results in a graphical format. You can see:

• Code covered by analysis.
• Defect distribution. You can choose to view the distribution by:

• File
• Category or defect name.

• Distribution of coding rule violations. You can choose to view the distribution by:

 Reviewing Results

16-9

• File
• Category or rule number.

The Dashboard displays violations of different types of rules such as MISRA C, JSF C++, or
custom rules on different graphs.

For more information, see Dashboard.
• In R2014a, on the Results Summary pane, you can distinguish between violations of predefined

coding rules such as MISRA C or C++ and custom coding rules.

• The predefined rules are indicated by .
• The custom rules are indicated by .

In addition, when you click the Check column header on the Results Summary pane, the rules
are sorted by rule number instead of alphabetically.

• In R2014a, you can double-click a variable name on the Source pane to highlight other instances
of the variable.

Additional back-to-model support for Simulink plug-in
In R2014a, the back-to-model feature is more stable. Additionally, support has been added for
Stateflow charts in Target Link and Linux operating systems.

For more information, see Identify Errors in Simulink Models.

R2014a

16-10

https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/overview-of-results-manager.html#bt2i3mk-1
https://www.mathworks.com/help/releases/R2014a/bugfinder/ug/identify-errors-in-simulink-models.html

R2013b

Version: 1.0

New Features

17

Analysis Setup

Introduction of Polyspace Bug Finder
Polyspace Bug Finder is a new companion product to Polyspace Code Prover. Polyspace Bug Finder
analyzes C and C++ code to find possible defects and coding rule violations. Bug Finder can run fast
analyses on large code bases with low false-positive results. Polyspace Bug Finder also calculates
code complexity metrics with Polyspace Metrics.

Bug Finder integrates with Simulink, Eclipse, Visual Studio, and Rhapsody to help you analyze code
from within your development environment.

Fast analysis of large code bases
Polyspace Bug Finder uses an efficient analysis method which produces results quickly, even from
large code bases. Therefore you can fix errors and rerun the analysis without having to wait. You can
find more issues early on in the development process and produce better quality code overall.

Eclipse integration
Polyspace Bug Finder comes with an Eclipse plug-in that integrates Polyspace into your development
environment. You can set up options, run analyses, view results, and fix bugs in the Eclipse interface.
Using the Polyspace plug-in, you can quickly find and fix bugs as you code.

For a tutorial on using the Polyspace Bug Finder plug-in, see Find Defects from the Eclipse Plug-In.

R2013b

17-2

https://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-the-eclipse-plug-in.html

Analysis Results

Detection of run-time errors, data flow problems, and other defects in
C and C++ code
Polyspace Bug Finder uses static analysis to find various defects for C and C++ code with few false-
positive results. The analysis does not require program execution, code instrumentation, or test
cases.

Some categories of defects are:

• Numeric
• Programming
• Static memory
• Dynamic memory
• Data-flow

To see a list of defects you can find, see Polyspace Bug Finder Defects.

Bug Finder analysis runs quickly, so you can fix errors and rerun analysis.

For information about running analyses, see Find Bugs.

Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF++, and
custom naming conventions
Polyspace Bug Finder can also check for compliance with coding rules. There are four industry-
defined rules you can select:

• MISRA C
• MISRA AC-AGC
• MISRA C++
• JSF C++

In addition, you can define rules to check for naming conventions.

You can run the coding rules checker separately, or at the same time as your analysis.

For more information, see Check Coding Rules.

Cyclomatic complexity and other code metrics
Using Polyspace Metrics, Polyspace Bug Finder calculates various code metrics, including cyclomatic
complexity. These statistics are displayed using Polyspace Metrics, an integrated Web interface. You
can use these results to track code quality over time. You can also share the code metrics, allowing
others to track your project’s progress.

 Analysis Results

17-3

https://www.mathworks.com/help/releases/R2013b/bugfinder/index.html#bt1buic
https://www.mathworks.com/help/releases/R2013b/bugfinder/run-verification.html
https://www.mathworks.com/help/releases/R2013b/bugfinder/check-coding-rules-compliance-1.html

Reviewing Results

Traceability of code analysis results to Simulink models
For generated code from Simulink models, Polyspace analysis results link directly back to your
Simulink model. You can trace defects back to the block that is causing the bug.

In the Source Code view of the Results Manager, the block names appear as links. When you select a
link, the corresponding block is highlighted in Simulink.

For a tutorial on using Polyspace Bug Finder with Simulink models, see Find Defects from Simulink.

Access to Polyspace Code Prover results
A Polyspace Bug Finder installation also includes the Polyspace Code Prover user interface. With only
a Polyspace Bug Finder license, you cannot run local Polyspace Code Prover verifications in the
Polyspace Code Prover interface. However, you can use the Polyspace Code Prover interface to
review results and upload comments to Polyspace Metrics.

For more information, see the Polyspace Code Prover Documentation.

R2013b

17-4

https://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-simulink.html
https://www.mathworks.com/help/releases/R2013b/codeprover/index.html

	R2021a
	Analysis Setup
	Simulink Support: Start Polyspace analysis without an explicit code generation step
	Configuration from Build System: Specify options delimiter and suppress console output
	Configuration from Build System: Improved detection of incompatible software
	Updated GCC Compiler Support: Set up Polyspace analysis for code compiled with GCC version 8.x
	Updated Microsoft Visual C++ Support: Set up a Polyspace analysis for code compiled with Visual Studio 2019
	Modifying Checker Behavior: Modify parameters for MISRA C:2012 rules 1.1 and 5.1 to 5.5
	polyspacesetup Function: Integrate Polyspace with MATLAB in fewer steps
	pslinkrunCrossRelease Function: Analyze code generated in an earlier release of Simulink by using a later release of Polyspace
	Functionality being removed: Compilation assistant
	Changes in analysis options and binaries

	Analysis Results
	AUTOSAR C++14 Support: Check for 327 AUTOSAR C++14 rules including 19 new rules in R2021a
	CERT C++ Support: Check for memory management and programming rule violations.
	MISRA C++:2008 Support: Check for disallowed pointer arithmetic
	MISRA C:2012 Support: Checkers updated to account for MISRA C:2012 Technical Corrigendum 1 and Amendment 2
	Guidelines: New checkers for software complexity defects
	JSF AV C++ Support: Check for cases where pass-by-reference is preferred to pass-by-pointer
	New Bug Finder Checkers: Check for inefficient string operations, noncompliance with AUTOSAR Standard specifications, and other issues
	Changes to coding rules checking
	Updated Bug Finder defect checkers

	Reviewing Results
	Simulink Block Annotation: Add multiple Polyspace annotations corresponding to multiple types of Polyspace results

	R2020b
	Analysis Setup
	Compiler Support: Set up Polyspace analysis for code compiled by Renesas SH C compilers
	Cygwin Support: Create Polyspace projects automatically by using Cygwin 3.x build commands
	C++17 Support: Run Polyspace analysis on code that has C++17 features
	Modifying Checker Behavior: Check for non-initialized buffers when passed by pointer to certain functions
	polyspacePackNGo Function: Generate and package Polyspace option files from a Simulink model
	Polyspace and MATLAB Integration: Integrate Polyspace with MATLAB programmatically without user interaction
	polyspace.ModelLinkOptions Object: Configure object to analyze code generated as a model reference
	Configuration from Build System: Generate a project file or analysis options file by using a JSON compilation database
	Configuration from Build System: Specify how Polyspace imports compiler macro definitions
	Configuration from Build System: Compiler configuration cached from prior runs for improved performance
	Changes in analysis options and binaries

	Analysis Results
	AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules including 61 new rules in R2020b
	CERT C Support: Check for missing const-qualification and use of hardcoded numbers
	CERT C++ Support: Check for exception handling issues, memory management problems, and other rule violations
	MISRA C++:2008 Support: Check for commented out code, variables used once, exception handling issues, and other rule violations
	JSF AV C++ Support: Check for commented out code and methods that can be inlined
	MISRA C Support: Check for commented out code
	New Bug Finder Defect Checkers: Check for post-C++11 defects such as problematic move operations, missing constexpr, and noexcept violations
	Changes to coding rules checking
	Updated Bug Finder defect checkers
	Updated code metrics specifications

	Reviewing Results
	Results Export: Export Polyspace results to external formats such as SARIF JSON
	Simulink Block Annotation: Annotate Simulink blocks from Polyspace user interface to justify Polyspace results
	User Authentication: Use a credentials file to pass your Polyspace Access credentials at the command line
	Importing Review Information: Accept information in source or destination results folder in case of merge conflicts
	Source Code Tooltips: Display information related to only the currently selected defect
	Functionality being removed: Polyspace Metrics

	R2020a
	Analysis Setup
	Compiler Support: Set up Polyspace analysis easily for code compiled with MPLAB XC8 C compilers
	Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and XC32 compilers
	Source Code Encoding: Non-ASCII characters in source code analyzed and displayed without errors
	Modifying Checkers: Create list of functions to prohibit and check for use of functions from the list
	Simulink Support: Analyze custom C code in C Function blocks
	Changes in analysis options and binaries
	Changes in MATLAB functions, options object and properties

	Analysis Results
	Extending Checkers: Run stricter analysis that considers all possible values of system inputs
	AUTOSAR C++14 Support: Check for 37 new rules related to lexical conventions, standard conversions, declarations, derived classes, special member functions, overloading and other groups
	CERT C Support: Check for CERT C rules related to threads and hardcoded sensitive data, and recommendations related to macros and code formatting
	CERT C++ Support: Check for CERT C++ rule related to hard coded sensitive data, order of initialization in constructor and other issues
	CWE Support: Check for CWE rule related to incorrect block delimitation
	New Bug Finder Defect Checkers: Check for possible performance bottlenecks, hardcoded sensitive data and other issues
	Changes to coding rules checking
	Updated Bug Finder defect checkers

	Reviewing Results
	Extending Checkers: See example value for defect found with stricter analysis

	R2019b
	Analysis Setup
	Compiler Support: Set up Polyspace analysis easily for code compiled with Cosmic compilers
	Simulink Support: Analyze generated code by using contextual buttons on the Simulink Editor toolstrip
	Simulink Support: Verify custom code called from C Caller blocks and Stateflow charts in context of model
	Simulink Support: Compare two Polyspace result sets and see the effect of changes in model or code generation parameters
	Configuration from Build System: Compiler version automatically detected from build system
	Changes in MATLAB functions, options object and properties

	Analysis Results
	AUTOSAR C++14 Support: Check for misuse of lambda expressions, potential problems with enumerations, and other issues
	CERT C++ Support: Check for pointer escape via lambda expressions, exceptions caught by value, use of bytewise operations for copying objects, and other issues
	CERT C Support: Check for undefined behavior from successive joining or detaching of the same thread
	New Bug Finder Defect Checkers: Check for new security vulnerabilities, multithreading issues, missing C++ overloads, and other issues
	MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be used
	Updated Bug Finder defect checkers

	Reviewing Results
	Code Annotations: Justify Bug Finder results by using annotations spread over multiple lines

	R2019a
	Analysis Setup
	Polyspace-only Licenses: Install Polyspace without MATLAB installation
	New Polyspace Products Supporting Continuous Integration: Perform automated code analysis after code submission with Polyspace Bug Finder Server and Polyspace Bug Finder Access
	Offloading Polyspace Analysis to Servers: Use Polyspace desktop products on client side and server products on server side
	Support for Security Standards: Check explicitly for subsets of CERT C, CERT C++ or ISO/IEC TS 17961 rules
	Coding Standard Support: Enforce common standards across team or organization by reusing checker configuration
	Collaborative Review Support: Upload results from Polyspace user interface to Polyspace Access web interface and share results using web links
	Compiler Support: Set up Polyspace analysis easily for code compiled with ARM v5 and v6 compilers
	Updated GCC, Clang, and Visual C++ Compiler Support: Set up Polyspace analysis easily for code compiled with GCC versions 7.x, Clang versions 4.x or 5.x, or Microsoft Visual C++ 2017 compilers
	Simulink Toolstrip: Analyze generated code using contextual buttons in Simulink Editor
	Changes in analysis options and binaries
	Changes in MATLAB functions, options object and properties

	Analysis Results
	AUTOSAR C++14 Support: Check for violations of rules from the AUTOSAR C++14 coding standard
	Improved CERT C++ Support: Check for missing overloads, ambiguous declaration syntax and other rules from CERT C++ Coding Standard
	Recursion Detection: See list of recursion cycles in C/C++ project
	New Bug Finder Defect Checkers: Check for misplaced CV qualifiers, C++ most vexing parse, ill-constructed variadic functions, and other issues
	Updated code metrics specifications
	Updated Bug Finder defect checkers

	Reviewing Results
	Support for Security Standards: See CERT C, CERT C++ or ISO/IEC TS 17961 rule violations explicitly in Polyspace analysis results and reports
	Bug Fix Suggestions: See possible fixes for types of defects found by Bug Finder
	Source Code Navigation: Keep result pinned while navigating through source code
	Report Generation: Generate Polyspace reports faster than previous releases
	Report Generation: Generate single file for HTML reports

	R2018b
	Analysis Setup
	Configuration from Build System: Automatically generate Polyspace configuration modules from build system
	C11 and C++14 Support: Run Polyspace analysis on code with C11 or C++14 features
	Autodetection of Concurrency Primitives: Multitasking model detected from C11 multithreading functions
	Compiler Support: Set up Polyspace analysis easily for code compiled with Renesas compilers
	Changes in analysis options and binaries
	Changes in MATLAB option object properties and option values

	Analysis Results
	CERT C++ Support: Identify CERT C++ violations by using defect checkers and coding rules
	Improved CERT C Support: Check for precision loss, blocking operations, and other rules from the CERT C Coding Standard
	Constant Overflows: Check for overflows on integer constants
	Updated Bug Finder defect checkers
	Changes to coding rules checking

	Reviewing Results
	Function Call Hierarchy: View call tree of functions in source code
	Header Files Access: Open your project header files directly from the point of inclusion

	R2018a
	Analysis Setup
	AUTOSAR Support: Set up Polyspace multitasking configuration automatically from an AUTOSAR description
	MATLAB Coder Support: Run Polyspace on C/C++ code generated from MATLAB code without additional setup
	Compiler Support: Set up Polyspace analysis easily for code compiled with Texas Instruments, IAR or CodeWarrior compilers
	Updated GCC and Clang Compiler Support: Set up Polyspace analysis easily for code compiled with GCC versions 5.x or 6.x, or Clang version 3.x compilers
	Configuration from Build System: Include or exclude sources when generating Polyspace project using polyspace-configure
	Support for IBM Rational Rhapsody to be removed
	Changes in analysis options and binaries
	Changes in MATLAB option object properties

	Analysis Results
	CERT C Support: Check for information leakage, invalid environment pointers, and other rules from the CERT C Coding Standard
	Cryptography Checkers: Check for security vulnerabilities such as incorrect use of public key cryptography routines
	MISRA C++ Support: Check for overriding of standard library functions, missing const qualifiers, and other MISRA C++ rules
	MISRA C:2012 Directive 4.8: Detect opportunities for data hiding
	Rule for Source Line Length: Constrain number of characters per line in your code
	Improved Fast Analysis: Find some multi-file MISRA C violations in fast analysis

	Reviewing Results
	Concurrency Modeling: View all tasks and interrupts extracted from code and Polyspace configuration in one view
	Data Races: Distinguish write-write conflicts from more benign read-write conflicts

	R2017b
	Analysis Setup
	Green Hills Compiler Support: Set up Polyspace analysis easily for code compiled with Green Hills MULTI Compiler
	OSEK Multitasking Support: Detect the multitasking configuration for your OSEK application automatically
	Incremental Analysis in Eclipse: Detect bugs as you type and save code in your Eclipse IDE
	Polyspace API in MATLAB: Configure analysis, run analysis, and read analysis results with a single MATLAB object
	Compiler-Specific Keywords: Nonstandard compiler-specific keywords are only supported when you specify compiler
	POSIX and BSD Standards: Use functions from these standards without additional setup
	Changes in analysis options and binaries

	Analysis Results
	Security Standards Support: Detect violations of all secure coding guidelines from ISO/IEC Technical Specification 17961:2013 and more guidelines from SEI CERT C Coding Standard
	MISRA C:2012 Directive 1.1: Detect instances of implementation-specific behavior in your code
	Changes to coding rule checking

	Reviewing Results
	Result Review Workflow: Hide results that you reviewed once and justified through source code annotations
	Code Annotations: Justify results or define your own format with a new annotation format
	MISRA Comments and Code Annotations: Import your existing MISRA C:2004 justifications to MISRA C:2012 results
	Results Review Workflow: Sort and filter results by subtype
	Constraint Specification: Navigate easily to the constraint specification interface for Bug Finder results
	Result Status: Assign statuses that directly correspond to stages of development workflow

	R2017a
	Analysis Setup
	Unified User Interface: Create and maintain a single Polyspace project for Bug Finder and Code Prover analysis
	Easier Compliance with Security Standards: Choose CWE, CERT C99, or ISO/IEC TS 17961 coding standard and address corresponding violations through Polyspace results and security reports
	Incremental Analysis of Specific Checks: Analyze only files edited since previous analysis to quickly find new defects and coding rule violations
	TASKING Compiler Support: Set up Polyspace analysis easily for code compiled with Altium TASKING compiler
	Updated Visual C++ Support: Set up Polyspace analysis easily for code compiled with Microsoft Visual C++ 2015 compiler
	Autodetection of Concurrency Primitives: Multitasking model detected from Windows, μC/OS II or C++11 multithreading functions
	Autodetection of Concurrency Primitives: Map Unsupported Thread Creation Functions to Supported Functions
	Manual Multitasking Setup: Specify routines that disable and reenable all interrupts
	Specifying Function Names for Options: Choose from prepopulated list in user interface instead of entering manually
	Polyspace API in MATLAB: Create MATLAB objects from Polyspace projects to run analysis
	Support for 128-bit variables
	Improvement in automatic project creation from build systems
	Changes in analysis options and binaries
	Changes in MATLAB option object properties
	Change in temporary folder location

	Analysis Results
	Additional Defect Checkers for Security: Check for security vulnerabilities such as incorrect use of cryptographic routines
	MISRA Amendment Support: Check your code for new security guidelines in MISRA C:2012 Amendment 1
	New Code Metrics: See number of lines in header files and number of local variables per function
	Changes to coding rule checking

	Reviewing Results
	Folder Names in Results: Filter or organize analysis results by source folder names
	Code to Model Traceability: Switch easily between identifiers in generated code and corresponding blocks in model
	Polyspace API in MATLAB: Read Polyspace analysis results from MATLAB
	Double Lock and Other Concurrency Defects: Get help investigating the defects using detailed control flow information
	Spreadsheet of Checkers: Use spreadsheet to keep track of checkers that you enable

	R2016b
	Analysis Setup
	Diab Compiler Support: Set up Polyspace analysis easily for code compiled with Wind River Diab compiler
	Multitasking Code Analysis Setup: Specify cyclic tasks and nonpreemptable interrupts directly as analysis options
	Improved source and include folder management
	Writable Examples: Modify example projects and restore original versions
	Run analysis on .psprj file from the command line
	Support for local threads
	Polyspace API in MATLAB: Configure and run Polyspace using MATLAB objects
	Configuration Parameters Help: View descriptions of Polyspace options in Simulink configuration parameters
	Eclipse Build Support: Set up Polyspace analysis from Eclipse build command
	Visual Studio 2010 add-in support to be removed from installation
	Support for Rhapsody 8.1
	DOS Mode Warning on Linux: Compilation warning for DOS inconsistencies
	Faster Restart for Remote Verification: Reuse compilation results from a previous analysis
	Changes in Target & Compiler analysis options
	Changes in analysis options and binaries

	Analysis Results
	CERT C Support: Identify CERT C violations using defect checkers and coding rules
	Local Variable Size Estimation: Find total size of local variables in a function
	Metrics for C++ Templates: View code complexity metrics for instances of C++ templates
	Changes to coding rule checking
	Updated Bug Finder defect checkers

	Reviewing Results
	Data Race Graphs: Fix data race defects easily using graphical view of function call sequence
	Interactive Graphical Display: Click graphs on Dashboard to filter results
	Event History for Coding Rules: Navigate easily between two locations in code that together cause a rule violation
	Results in Macros Consolidated: View coding rule violations and defects on macro definitions instead of macro instances
	Analysis Objectives in Eclipse: Create review scopes to focus your review
	Filtered Report: Reuse result filters for generated report
	Results Export: Export results to text file for computing graphs and statistics
	Coding Rules in Report: View improved presentation of coding rules violations in report
	English Reports in Non-English Locales: Generate English reports on operating systems with a different language
	Change in report template location
	Improved PDF Report Generation
	Changes in Polyspace User Interface

	R2016a
	Analysis Setup
	Files to Review: Generate results for only specified files and folders
	Faster MISRA Checking: Check coding rules more quickly and efficiently
	S-Function Analysis: Launch analysis of S-Function code from Simulink
	Import signal ranges from model for generated code analysis
	Polyspace Metrics Tomcat Upgrade: Use upgraded default Tomcat server or custom Tomcat version
	Polyspace Metrics Interface Updated: View project and metrics summary and defect impact
	Source Code Search: Search huge applications more quickly
	Default Layouts: Switch easily between project setup and results review in user interface
	Files Not Compiled: Receive alerts about compilation errors in dashboard and reports
	Project Language Flexibility: Change your project language at any time
	Improvements in automatic project creation from build command
	Polyspace TargetLink plug-in supports data from structures
	Changes in analysis options

	Analysis Results
	Improvements to defect checkers
	Improvements in checking of previously supported MISRA C rules
	Standards Mapped to Defects: Observe coding standards using Polyspace Bug Finder

	Reviewing Results
	More results available in real time
	Autocompletion for Review Comments: Partially type previous comment to select complete comment
	Persistent Filter States: Apply filters once and view filtered results across multiple runs
	Polyspace Eclipse plug-in results location moved

	R2015aSP1
	R2015b
	Analysis Setup
	Mixed C/C++ Code: Run analysis on entire project with C and C++ source files
	Autodetection of Multitasking Primitives: Analyze source code with multitasking primitives from POSIX and VxWorks without manual setup
	Microsoft Visual C++ 2013: Analyze code developed in Microsoft Visual C++ 2013
	GNU 4.9 and Clang 3.5 Support: Analyze code compiled with GNU 4.9 or Clang 3.5
	Improvements to automatic project creation from build command
	Start Page: Get oriented with Polyspace Bug Finder
	Saved Layouts: Save your preferred layouts of the Polyspace user interface
	Renaming of labels in Polyspace user interface
	Including options multiple times
	Updated Support for TargetLink
	Changes in analysis options
	Binaries removed
	Support for Visual Studio 2008 to be removed
	Import Visual Studio project removed

	Analysis Results
	More Defect Categories: Detect security vulnerabilities, resource management issues, object oriented design issues
	Complete MISRA C:2012 Support: Detect violations of all MISRA C:2012 rules
	Improvements in checking of previously supported MISRA C rules
	Changes to Bug Finder Defects

	Reviewing Results
	Results in Real Time: View results as they are produced
	Improved Eclipse Support: View results embedded in source code and context-sensitive help
	Defects Classified by Impact: Prioritize defect review by using the impact attribute assigned to each defect type
	Improved Review Capability: View result details and add review comments in one window
	Enhanced Review Scope: Filter coding rule violations from display in one click
	Configuration Associated with Result Not Opened by Default
	Improvements in Report Templates
	XML and RTF report formats removed

	R2015a
	Analysis Setup
	Simplified workflow for project setup and results review with a unified user interface
	Search improvements in the user interface
	Option to specify program termination functions
	Support for GCC 4.8
	Polyspace plug-in for Simulink improvements
	Polyspace binaries being removed
	Import Visual Studio project being removed

	Analysis Results
	Changes to Bug Finder defects
	Improvements in coding rules checking

	Reviewing Results
	Code complexity metrics available in user interface
	Context-sensitive help for code complexity metrics, MISRA-C:2012, and custom coding rules
	Review of latest results compared to the last run
	Simplified results infrastructure
	Default statuses to justify results
	Filters to limit display of results

	R2014b
	Analysis Setup
	Parallel compilation for faster analysis
	Support for Mac OS
	Support for C++11
	Code editor in Polyspace interface
	Ignore files and folders during analysis
	Simulink plug-in support for custom project files
	TargetLink support updated
	AUTOSAR support added
	Remote launcher and queue manager renamed
	Improved global menu in user interface
	Improved Project Manager perspective
	Polyspace binaries being removed
	Import Visual Studio project being removed

	Analysis Results
	Support for MISRA C:2012
	Additional concurrency issue detection (deadlocks, double locks, and others)
	New and updated defect checkers

	Reviewing Results
	Context-sensitive help for analysis options and defects
	Improved Results Manager perspective
	Error mode removed from coding rules checking

	R2014a
	Analysis Setup
	Automatic project setup from build systems
	Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects
	Simplification of coding rules checking
	Preferences file moved
	Security level support for batch analysis
	Interactive mode for remote analysis
	Default text editor
	Support for Windows 8 and Windows Server 2012
	Function replacement in Simulink plug-in
	Check model configuration automatically before analysis
	Data range specification support
	Polyspace binaries being removed

	Analysis Results
	Classification of bugs according to the Common Weakness Enumeration (CWE) standard
	Additional coding rules support (MISRA-C:2004 Rule 18.2, MISRA-C++ Rule 5-0-11)
	Additional analysis checkers
	Improvement of floating point precision

	Reviewing Results
	Results folder appearance in Project Browser
	Results manager improvements
	Additional back-to-model support for Simulink plug-in

	R2013b
	Analysis Setup
	Introduction of Polyspace Bug Finder
	Fast analysis of large code bases
	Eclipse integration

	Analysis Results
	Detection of run-time errors, data flow problems, and other defects in C and C++ code
	Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF++, and custom naming conventions
	Cyclomatic complexity and other code metrics

	Reviewing Results
	Traceability of code analysis results to Simulink models
	Access to Polyspace Code Prover results

