Polyspace® Bug Finder™ Release Notes

o/) MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Release Notes
© COPYRIGHT 2013-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2021a
Analysis Setup e 1-2
Simulink Support: Start Polyspace analysis without an explicit code
generation step e 1-2
Configuration from Build System: Specify options delimiter and suppress
console output 1-2
Configuration from Build System: Improved detection of incompatible
SOfEWATE e 1-3
Updated GCC Compiler Support: Set up Polyspace analysis for code
compiled with GCC version 8.x, 1-3
Updated Microsoft Visual C++ Support: Set up a Polyspace analysis for
code compiled with Visual Studio 2019 1-3
Modifying Checker Behavior: Modify parameters for MISRA C:2012 rules
1.1and 5.1 0 5.5 .. oot e 1-4

polyspacesetup Function: Integrate Polyspace with MATLAB in fewer steps

pslinkrunCrossRelease Function: Analyze code generated in an earlier

release of Simulink by using a later release of Polyspace 1-5
Functionality being removed: Compilation assistant 1-5
Changes in analysis options and binaries 1-6

Analysis Results 1-7
AUTOSAR C++14 Support: Check for 327 AUTOSAR C++14 rules including

19newrulesin R2021a i 1-7
CERT C++ Support: Check for memory management and programming rule

VIolations. e 1-8
MISRA C++:2008 Support: Check for disallowed pointer arithmetic 1-9
MISRA C:2012 Support: Checkers updated to account for MISRA C:2012

Technical Corrigendum 1 and Amendment 2 1-9
Guidelines: New checkers for software complexity defects 1-11
JSF AV C++ Support: Check for cases where pass-by-reference is preferred

topass-by-pointer 1-12
New Bug Finder Checkers: Check for inefficient string operations,

noncompliance with AUTOSAR Standard specifications, and other issues

... 1-12
Changes to coding ruleschecking 1-13
Updated Bug Finder defect checkers 1-18
Reviewing Results i 1-20

Simulink Block Annotation: Add multiple Polyspace annotations
corresponding to multiple types of Polyspace results 1-20

iii

iv

Contents

R2020b

Analysis Setup e 2-2
Compiler Support: Set up Polyspace analysis for code compiled by Renesas
SHCcompilers e 2-2
Cygwin Support: Create Polyspace projects automatically by using Cygwin
3xbuild commands 2-2
C++17 Support: Run Polyspace analysis on code that has C++17 features
.. 2-2
Modifying Checker Behavior: Check for non-initialized buffers when passed
by pointer to certain functions 2-3
polyspacePackNGo Function: Generate and package Polyspace option files
from a Simulinkmodel 2-3
Polyspace and MATLAB Integration: Integrate Polyspace with MATLAB
programmatically without user interaction 2-4
polyspace.ModelLinkOptions Object: Configure object to analyze code
generated asamodelreference, 2-4
Configuration from Build System: Generate a project file or analysis options
file by using a JSON compilation database 2-4
Configuration from Build System: Specify how Polyspace imports compiler
macro definitions 2-5
Configuration from Build System: Compiler configuration cached from prior
runs for improved performance 2-5
Changes in analysis options and binaries 2-5
Analysis Results e 2-7
AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules including
61 newrulesin R2020b 2-7
CERT C Support: Check for missing const-qualification and use of
hardcoded numbers 2-12
CERT C++ Support: Check for exception handling issues, memory
management problems, and other rule violations 2-13
MISRA C++:2008 Support: Check for commented out code, variables used
once, exception handling issues, and other rule violations 2-13
JSF AV C++ Support: Check for commented out code and methods that can
beinlined 2-14
MISRA C Support: Check for commented outcode 2-14
New Bug Finder Defect Checkers: Check for post-C++11 defects such as
problematic move operations, missing constexpr, and noexcept violations
... 2-15
Changes to coding rules checking 2-15
Updated Bug Finder defect checkers 2-21
Updated code metrics specifications 2-23
Reviewing Results 2-25
Results Export: Export Polyspace results to external formats such as SARIF
JSON o 2-25
Simulink Block Annotation: Annotate Simulink blocks from Polyspace user
interface to justify Polyspaceresults 2-25
User Authentication: Use a credentials file to pass your Polyspace Access
credentials at the commandline 2-25

Importing Review Information: Accept information in source or destination

results folder in case of merge conflicts 2-26
Source Code Tooltips: Display information related to only the currently
selecteddefect 2-26
Functionality being removed: Polyspace Metrics 2-27
R2020a
Analysis Setup 3-2
Compiler Support: Set up Polyspace analysis easily for code compiled with
MPLAB XC8 C cOmpIlerst e i 3-2
Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and
XC32compilers 3-2
Source Code Encoding: Non-ASCII characters in source code analyzed and
displayed withouterrors 3-2
Modifying Checkers: Create list of functions to prohibit and check for use of
functions fromthe list 3-3
Simulink Support: Analyze custom C code in C Function blocks 3-3
Changes in analysis options and binaries 3-3
Changes in MATLAB functions, options object and properties 3-4
Analysis Results e 3-5

Extending Checkers: Run stricter analysis that considers all possible values
of systeminputs 3-5
AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes, special
member functions, overloading and other groups 3-6
CERT C Support: Check for CERT C rules related to threads and hardcoded
sensitive data, and recommendations related to macros and code

formatting 3-9
CERT C++ Support: Check for CERT C++ rule related to hard coded
sensitive data, order of initialization in constructor and other issues .. 3-10
CWE Support: Check for CWE rule related to incorrect block delimitation
... 3-10
New Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and otherissues 3-10
Changes to coding ruleschecking 3-13
Updated Bug Finder defect checkers 3-14
Reviewing Results i, 3-16
Extending Checkers: See example value for defect found with stricter
ANAlYSIS . . 3-16

vi

Contents

R2019b

Analysis Setup e 4-2
Compiler Support: Set up Polyspace analysis easily for code compiled with
Cosmic compilers e 4-2
Simulink Support: Analyze generated code by using contextual buttons on
the Simulink Editor toolstrip 4-2
Simulink Support: Verify custom code called from C Caller blocks and
Stateflow charts in contextof model 4-3
Simulink Support: Compare two Polyspace result sets and see the effect of
changes in model or code generation parameters 4-4
Configuration from Build System: Compiler version automatically detected
frombuild system 4-4
Changes in MATLAB functions, options object and properties 4-5
Analysis Results e 4-7
AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and otherissues 4-7
CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and otherissues 4-8
CERT C Support: Check for undefined behavior from successive joining or
detaching of the samethread 4-8
New Bug Finder Defect Checkers: Check for new security vulnerabilities,
multithreading issues, missing C++ overloads, and other issues 4-9
MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be used
.. 4-9
Updated Bug Finder defect checkers 4-9
Reviewing Results 4-11
Code Annotations: Justify Bug Finder results by using annotations spread
overmultiplelines 4-11
R2019a
Analysis Setup 5-2
Polyspace-only Licenses: Install Polyspace without MATLAB installation
.. 5-2
New Polyspace Products Supporting Continuous Integration: Perform
automated code analysis after code submission with Polyspace Bug
Finder Server and Polyspace Bug Finder Access 5-2
Offloading Polyspace Analysis to Servers: Use Polyspace desktop products
on client side and server products on serverside 5-3
Support for Security Standards: Check explicitly for subsets of CERT C,
CERT C++4 or ISO/IECTS 17961 rulest 5-5

Coding Standard Support: Enforce common standards across team or

organization by reusing checker configuration 5-6
Collaborative Review Support: Upload results from Polyspace user interface

to Polyspace Access web interface and share results using web links . . 5-7
Compiler Support: Set up Polyspace analysis easily for code compiled with

ARMvbandvb compilers 5-9

Updated GCC, Clang, and Visual C++ Compiler Support: Set up Polyspace
analysis easily for code compiled with GCC versions 7.x, Clang versions

4.x or 5.%, or Microsoft Visual C++ 2017 compilers 5-10
Simulink Toolstrip: Analyze generated code using contextual buttons in
Simulink Editor 5-11
Changes in analysis options and binaries 5-11
Changes in MATLAB functions, options object and properties 5-13
Analysis Results 5-17

AUTOSAR C++14 Support: Check for violations of rules from the AUTOSAR
C++14 codingstandard, 5-17

Improved CERT C++ Support: Check for missing overloads, ambiguous
declaration syntax and other rules from CERT C++ Coding Standard

... 5-17
Recursion Detection: See list of recursion cycles in C/C++ project 5-18
New Bug Finder Defect Checkers: Check for misplaced CV qualifiers, C++

most vexing parse, ill-constructed variadic functions, and other issues

... 5-18
Updated code metrics specifications 5-19
Updated Bug Finder defect checkers 5-21

Reviewing Results 5-23
Support for Security Standards: See CERT C, CERT C++ or ISO/IEC TS
17961 rule violations explicitly in Polyspace analysis results and reports
... 5-23
Bug Fix Suggestions: See possible fixes for types of defects found by Bug
Finder 5-24
Source Code Navigation: Keep result pinned while navigating through
SOUICE COAE . ..o vttt et ettt e 5-24
Report Generation: Generate Polyspace reports faster than previous
releases 5-26
Report Generation: Generate single file for HTML reports 5-26
R2018b
Analysis Setup 6-2
Configuration from Build System: Automatically generate Polyspace
configuration modules from build system 6-2
C11 and C++14 Support: Run Polyspace analysis on code with C11 or C+
+14features 6-3
Autodetection of Concurrency Primitives: Multitasking model detected from
C11 multithreading functions 6-3

viii

Contents

Compiler Support: Set up Polyspace analysis easily for code compiled with

Renesas compilers i 6-3
Changes in analysis options and binaries 6-4
Changes in MATLAB option object properties and option values 6-5

Analysis Results e 6-7

CERT C++ Support: Identify CERT C++ violations by using defect checkers
andcoding rules 6-7
Improved CERT C Support: Check for precision loss, blocking operations,

and other rules from the CERT C Coding Standard 6-8
Constant Overflows: Check for overflows on integer constants 6-9
Updated Bug Finder defect checkers 6-9
Changes to coding rules checking 6-10

Reviewing Results i 6-11
Function Call Hierarchy: View call tree of functions in source code 6-11
Header Files Access: Open your project header files directly from the point

of INCIUSION . . . 6-11

R2018a

Analysis Setup 7-2
AUTOSAR Support: Set up Polyspace multitasking configuration

automatically from an AUTOSAR description 7-2
MATLAB Coder Support: Run Polyspace on C/C++ code generated from

MATLAB code without additional setup 7-2
Compiler Support: Set up Polyspace analysis easily for code compiled with

Texas Instruments, IAR or CodeWarrior compilers 7-3
Updated GCC and Clang Compiler Support: Set up Polyspace analysis easily

for code compiled with GCC versions 5.x or 6.x, or Clang version 3.x

COmPIlers e 7-4
Configuration from Build System: Include or exclude sources when

generating Polyspace project using polyspace-configure 7-5
Support for IBM Rational Rhapsody to be removed 7-5
Changes in analysis options and binaries 7-5
Changes in MATLAB option object properties 7-8

AnalysisResults 7-11
CERT C Support: Check for information leakage, invalid environment

pointers, and other rules from the CERT C Coding Standard 7-11
Cryptography Checkers: Check for security vulnerabilities such as incorrect

use of public key cryptography routines 7-12
MISRA C++ Support: Check for overriding of standard library functions,

missing const qualifiers, and other MISRA C++rules 7-13
MISRA C:2012 Directive 4.8: Detect opportunities for data hiding 7-14
Rule for Source Line Length: Constrain number of characters per line in

VOUL COUE &« v v vttt et e et et e e e et e e e 7-14

Improved Fast Analysis: Find some multi-file MISRA C violations in fast
ANAlYSIS . .. e 7-14

Reviewing Results 7-15

Concurrency Modeling: View all tasks and interrupts extracted from code

and Polyspace configurationinoneview 7-15
Data Races: Distinguish write-write conflicts from more benign read-write
conflicts 7-16
R2017b
Analysis Setup 8-2
Green Hills Compiler Support: Set up Polyspace analysis easily for code
compiled with Green Hills MULTI Compiler 8-2
OSEK Multitasking Support: Detect the multitasking configuration for your
OSEK application automatically 8-2
Incremental Analysis in Eclipse: Detect bugs as you type and save code in
your Eclipse IDE 8-3
Polyspace API in MATLAB: Configure analysis, run analysis, and read
analysis results with a single MATLAB object 8-3
Compiler-Specific Keywords: Nonstandard compiler-specific keywords are
only supported when you specify compiler 8-5
POSIX and BSD Standards: Use functions from these standards without
additional setup 8-5
Changes in analysis options and binaries 8-5
Analysis Results e 8-9
Security Standards Support: Detect violations of all secure coding
guidelines from ISO/IEC Technical Specification 17961:2013 and more
guidelines from SEI CERT C Coding Standard 8-9
MISRA C:2012 Directive 1.1: Detect instances of implementation-specific
behaviorinyourcode 8-10
Changes to coding rule checking 8-10
Reviewing Results i 8-12
Result Review Workflow: Hide results that you reviewed once and justified
through source code annotations 8-12
Code Annotations: Justify results or define your own format with a new
annotationformat 8-13
MISRA Comments and Code Annotations: Import your existing MISRA
C:2004 justifications to MISRA C:2012results 8-13
Results Review Workflow: Sort and filter results by subtype 8-14
Constraint Specification: Navigate easily to the constraint specification
interface for Bug Finderresults 8-15
Result Status: Assign statuses that directly correspond to stages of
development workflow 8-16

ix

X

Contents

R2017a

Analysis Setup e 9-2

Unified User Interface: Create and maintain a single Polyspace project for

Bug Finder and Code Proveranalysis 9-2
Easier Compliance with Security Standards: Choose CWE, CERT C99, or

ISO/IEC TS 17961 coding standard and address corresponding violations

through Polyspace results and security reports 9-5
Incremental Analysis of Specific Checks: Analyze only files edited since

previous analysis to quickly find new defects and coding rule violations

.. 9-6
TASKING Compiler Support: Set up Polyspace analysis easily for code
compiled with Altium TASKING compiler 9-7
Updated Visual C++ Support: Set up Polyspace analysis easily for code
compiled with Microsoft Visual C++ 2015 compiler 9-7
Autodetection of Concurrency Primitives: Multitasking model detected from
Windows, pC/OS II or C++11 multithreading functions 9-8
Autodetection of Concurrency Primitives: Map Unsupported Thread
Creation Functions to Supported Functions 9-8
Manual Multitasking Setup: Specify routines that disable and reenable all
INterrupts 9-9
Specifying Function Names for Options: Choose from prepopulated list in
user interface instead of entering manually 9-11
Polyspace API in MATLAB: Create MATLAB objects from Polyspace projects
torun analysist 9-11
Support for 128-bit variables 9-12
Improvement in automatic project creation from build systems 9-12
Changes in analysis options and binaries 9-12
Changes in MATLAB option object properties 9-16
Change in temporary folder location 9-17
AnalysisResults e 9-18
Additional Defect Checkers for Security: Check for security vulnerabilities
such as incorrect use of cryptographic routines 9-18
MISRA Amendment Support: Check your code for new security guidelines in
MISRA C:2012 Amendment 1 i 9-20
New Code Metrics: See number of lines in header files and number of local
variables per function 9-21
Changes to coding rule checking 9-21
Reviewing Results 9-23
Folder Names in Results: Filter or organize analysis results by source folder
DAINES &« o v vt et e e e e e e e 9-23
Code to Model Traceability: Switch easily between identifiers in generated
code and corresponding blocksinmodel 9-23
Polyspace API in MATLAB: Read Polyspace analysis results from MATLAB
... 9-25
Double Lock and Other Concurrency Defects: Get help investigating the
defects using detailed control flow information 9-25
Spreadsheet of Checkers: Use spreadsheet to keep track of checkers that
youenable e 9-26

R2016b

Analysis Setup 10-2
Diab Compiler Support: Set up Polyspace analysis easily for code compiled
with Wind River Diab compiler 10-2
Multitasking Code Analysis Setup: Specify cyclic tasks and nonpreemptable
interrupts directly as analysisoptions 10-2
Improved source and include folder management 10-2
Writable Examples: Modify example projects and restore original versions
... 10-3
Run analysis on .psprj file from the command line 10-3
Support forlocalthreads i 10-3
Polyspace API in MATLAB: Configure and run Polyspace using MATLAB
0bJECtS . . e 10-4
Configuration Parameters Help: View descriptions of Polyspace options in
Simulink configuration parameters 10-4
Eclipse Build Support: Set up Polyspace analysis from Eclipse build
COMMANA . .\ttt 10-5
Visual Studio 2010 add-in support to be removed from installation 10-5
Support for Rhapsody 8.1 10-5
DOS Mode Warning on Linux: Compilation warning for DOS inconsistencies
... 10-5
Faster Restart for Remote Verification: Reuse compilation results from a
previous analysis 10-6
Changes in Target & Compiler analysis options 10-6
Changes in analysis options and binaries 10-7
AnalysisResults e 10-9
CERT C Support: Identify CERT C violations using defect checkers and
Coding TUlesSt 10-9
Local Variable Size Estimation: Find total size of local variables in a function
.. 10-10
Metrics for C++ Templates: View code complexity metrics for instances of C
+4+templates 10-11
Changes to coding rule checking 10-11
Updated Bug Finder defect checkers 10-12
Reviewing Results 10-14

Data Race Graphs: Fix data race defects easily using graphical view of
function call sequence i 10-14
Interactive Graphical Display: Click graphs on Dashboard to filter results

.. 10-14
Event History for Coding Rules: Navigate easily between two locations in
code that together cause a rule violation 10-15
Results in Macros Consolidated: View coding rule violations and defects on
macro definitions instead of macro instances 10-15
Analysis Objectives in Eclipse: Create review scopes to focus your review
.. 10-15
Filtered Report: Reuse result filters for generated report 10-16
Results Export: Export results to text file for computing graphs and
StatiStICS . . . oo e 10-16

xi

xii

Contents

Coding Rules in Report: View improved presentation of coding rules

violationsinreport 10-16
English Reports in Non-English Locales: Generate English reports on
operating systems with a different language 10-17
Change in report template location 10-17
Improved PDF Report Generation 10-17
Changes in Polyspace User Interface 10-17
R2016a
Analysis Setup 11-2
Files to Review: Generate results for only specified files and folders 11-2
Faster MISRA Checking: Check coding rules more quickly and efficiently
... 11-2
S-Function Analysis: Launch analysis of S-Function code from Simulink
... 11-2
Import signal ranges from model for generated code analysis 11-3
Polyspace Metrics Tomcat Upgrade: Use upgraded default Tomcat server or
custom Tomcat VeISioncu i, 11-3
Polyspace Metrics Interface Updated: View project and metrics summary
and defectimpact 11-3
Source Code Search: Search huge applications more quickly 11-3
Default Layouts: Switch easily between project setup and results review in
userinterface 11-4
Files Not Compiled: Receive alerts about compilation errors in dashboard
and TePOTES . . . i 11-4
Project Language Flexibility: Change your project language at any time
... 11-4
Improvements in automatic project creation from build command 11-4
Polyspace TargetLink plug-in supports data from structures 11-5
Changes in analysisoptions 11-5
AnalysisResults 11-7
Improvements to defect checkers 11-7
Improvements in checking of previously supported MISRA C rules 11-7
Standards Mapped to Defects: Observe coding standards using Polyspace
Bug Finder 11-8
Reviewing Results i, 11-9
More results available inrealtime 11-9
Autocompletion for Review Comments: Partially type previous comment to
select complete comment 11-9
Persistent Filter States: Apply filters once and view filtered results across
multiple TUNS 11-9
Polyspace Eclipse plug-in results locationmoved 11-9

R2015aSP1

Bug Fixes

R2015b

Analysis Setup 13-2

Mixed C/C++ Code: Run analysis on entire project with C and C++ source

flles ... 13-2
Autodetection of Multitasking Primitives: Analyze source code with

multitasking primitives from POSIX and VxWorks without manual setup

... 13-2
Microsoft Visual C++ 2013: Analyze code developed in Microsoft Visual C+
+ 2003 13-3
GNU 4.9 and Clang 3.5 Support: Analyze code compiled with GNU 4.9 or
Clang 3.0 . .. e 13-3
Improvements to automatic project creation from build command 13-3
Start Page: Get oriented with Polyspace Bug Finder 13-4
Saved Layouts: Save your preferred layouts of the Polyspace user interface
... 13-4
Renaming of labels in Polyspace userinterface 13-5
Including options multiple times 13-5
Updated Support for TargetLink 13-6
Changes in analysisoptions 13-6
Binaries removed 13-8
Support for Visual Studio 2008 to be removed 13-8
Import Visual Studio projectremoved 13-9
AnalysisResults 13-10
More Defect Categories: Detect security vulnerabilities, resource
management issues, object oriented design issues 13-10
Complete MISRA C:2012 Support: Detect violations of all MISRA C:2012
TULES oo 13-10
Improvements in checking of previously supported MISRA Crules 13-11
Changes to Bug Finder Defects 13-12
Reviewing Results 13-19
Results in Real Time: View results as they are produced 13-19
Improved Eclipse Support: View results embedded in source code and
context-sensitive help 13-19
Defects Classified by Impact: Prioritize defect review by using the impact
attribute assigned to each defecttype 13-20
Improved Review Capability: View result details and add review comments
inonewindow e 13-20
Enhanced Review Scope: Filter coding rule violations from display in one
ClCK . .o 13-21
Configuration Associated with Result Not Opened by Default 13-21

xiii

Improvements in Report Templates 13-21

XML and RTF report formats removed 13-21
R2015a
Analysis Setup 14-2
Simplified workflow for project setup and results review with a unified user
interface 14-2
Search improvements in the userinterface 14-2
Option to specify program termination functions 14-3
Support for GCC 4.8 e 14-3
Polyspace plug-in for Simulink improvements 14-3
Polyspace binaries beingremoved 14-4
Import Visual Studio project beingremoved 14-4
Analysis Results 14-5
Changes to Bug Finderdefects 14-5
Improvements in coding rules checking 14-5
Reviewing Results i, 14-7
Code complexity metrics available in user interface 14-7
Context-sensitive help for code complexity metrics, MISRA-C:2012, and
custom codingrules 14-7
Review of latest results compared tothelastrun 14-7
Simplified results infrastructure 14-7
Default statuses to justifyresults 14-8
Filters to limit display of results 14-8
R2014b
Analysis Setup 15-2
Parallel compilation for faster analysis 15-2
Support for Mac OS 15-2
Support for C++11 e 15-2
Code editor in Polyspace interface 15-2
Ignore files and folders during analysis 15-2
Simulink plug-in support for custom projectfiles 15-3
TargetLink supportupdated 15-3
AUTOSAR supportadded 15-3
Remote launcher and queue managerrenamed 15-3
Improved global menu in userinterface 15-4
Improved Project Manager perspective 15-4
Polyspace binaries beingremoved 15-4
Import Visual Studio project beingremoved 15-5

xiv Contents

AnalysisResults 15-6

Support for MISRA C:2012 15-6
Additional concurrency issue detection (deadlocks, double locks, and
OtNETS) o vt 15-6
New and updated defect checkers 15-7
Reviewing Results 15-9
Context-sensitive help for analysis options and defects 15-9
Improved Results Manager perspective 15-9
Error mode removed from coding rules checking 15-9
R2014a
Analysis Setup 16-2
Automatic project setup from build systems 16-2
Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects . . . 16-2
Simplification of coding rules checking 16-2
Preferencesfilemoved 16-3
Security level support for batch analysis 16-4
Interactive mode for remote analysis 16-4
Default texteditor 16-4
Support for Windows 8 and Windows Server 2012 16-4
Function replacement in Simulink plug-in 16-4
Check model configuration automatically before analysis 16-5
Data range specification support i 16-5
Polyspace binaries beingremoved, 16-5
AnalysisResults e 16-7
Classification of bugs according to the Common Weakness Enumeration
(CWE)standard0 ittt 16-7
Additional coding rules support (MISRA-C:2004 Rule 18.2, MISRA-C++
Rule 5-0-11)o 16-7
Additional analysis checkers i, 16-7
Improvement of floating point precision 16-7
Reviewing Results 16-8
Results folder appearance in Project Browser 16-8
Results manager improvements 16-9
Additional back-to-model support for Simulink plug-in 16-10
R2013b
Analysis Setup 17-2

xvi

Contents

Introduction of Polyspace Bug Finder 17-2

Fast analysis of large code bases 17-2
Eclipse integration e 17-2
Analysis Results e 17-3
Detection of run-time errors, data flow problems, and other defects in C and
CHHCode ..ot e 17-3
Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF++, and
custom naming conventions i, 17-3
Cyclomatic complexity and other code metrics 17-3
Reviewing Results 17-4
Traceability of code analysis results to Simulink models 17-4
Access to Polyspace Code Proverresults 17-4

R2021a

Version: 3.4
New Features
Bug Fixes

Compatibility Considerations

R2021a

Analysis Setup

1-2

Simulink Support: Start Polyspace analysis without an explicit code
generation step

Summary: In R2021a, start the Polyspace analysis of generated code without having to explicitly
generate the code first. To start the Polyspace analysis of code generated from a model, Click Run
Analysis in the Simulink® toolstrip.

Analyze Code from D
controlle

= ! Run
Code Generated as Top Model - Analysis

If you have Embedded Coder®, Polyspace generates code from the model by using Embedded Coder
when there is no previously generated code corresponding to the model. After the code generation is
complete, the Polyspace analysis starts.

See “Run Polyspace Analysis on Code Generated from Simulink Model”.

Benefits: Previously, you generated code explicitly in a separate step before starting the Polyspace
analysis of the generated code. You are no longer required to perform this step.

Additional Considerations: Before starting a Polyspace analysis, you still need to generate code
explicitly if any of the following is true:

* You do not use Embedded Coder to generate code.
* The model is configured to generate code as a model reference.

Configuration from Build System: Specify options delimiter and
suppress console output

Summary: In R2021a, polyspace-configure has new options to simplify the creation of a
Polyspace project or options file:

* -options-for-sources-delimiter — Use this option to specify an ASCII character that
Polyspace uses as a delimiter between a group of analysis options. You typically use this option in
combination with -options-for-sources, which associates a group of analysis options with
specific source files. You might want to specify a delimiter if, for instance, the default delimiter (;)
is already used inside a macro.

* -no-console-output — Use this option to completely suppress the console output of
polyspace-configure, including error and warning messages. By default, polyspace-
configure emits errors and warnings only.

See also polyspace-configure.

Benefits: The new options allow you to customize the polyspace-configure runs without
extensive additional scripting.

Analysis Setup

Configuration from Build System: Improved detection of incompatible
software

Summary: In R2021a, if you use software that is not compatible with polyspace-configure when
you trace your build process, polyspace-configure emits a message that identifies the software
and that provides contextual help if applicable. Software that is not compatible with polyspace-
configure includes some antivirus software and certain build systems such as Bazel.

For more information, see polyspace-configure.
Benefits: Previously, when polyspace-configure could not trace your build process because of

incompatible software, the command output did not identify the software. Now, you can easily check
if your build system and environment is compatible with polyspace-configure.

Updated GCC Compiler Support: Set up Polyspace analysis for code
compiled with GCC version 8.x

Summary: In R2021a, Polyspace supports the GCC compiler version 8.x natively. If you build your
source code by using GCC version 8.x, you can specify the compiler name for your Polyspace analysis.

Target Environment

Compiler gnud.x w

Target processor type | x86_64 v

For more information, see Compiler (-compiler).

Benefits: Because of the native support, you can now set up a Polyspace project without knowing the
internal workings of this compiler. The analysis can interpret macros that are implicitly defined by the
compiler and compiler-specific language extensions such as keywords and pragmas.

Updated Microsoft Visual C++ Support: Set up a Polyspace analysis
for code compiled with Visual Studio 2019

Summary: In R2021a, Polyspace supports the compiler Visual Studio® 2019 natively. If you build
your source code by using Visual Studio 2019 (versions 16.x), you can specify the compiler name for
your Polyspace analysis.

Target Environment

Compiler wisual 16.x e

Target processor type | x86_654 e

For more information, see Compiler (-compiler).
Benefits: Because of the native support, you can now set up a Polyspace project without knowing the

internal workings of this compiler. The analysis can interpret macros that are implicitly defined by the
compiler and compiler-specific language extensions such as keywords and pragmas.

1-3

R2021a

1-4

Modifying Checker Behavior: Modify parameters for MISRA C:2012

rules 1.1 and 5.1 to 5.5

Summary: In R2021a, you can modify the thresholds used in the checkers for MISRA C®: 2012 Rules

1.1 and 5.1 to 5.5.

Rule

Description

Supported Modification

MISRA C:2012 Rule 1.1

The program shall contain no
violations of the standard C
syntax and constraints, and
shall not exceed the
implementation's translation
limits.

You can increase or decrease
these parameters of the rule
checker:

* Maximum depth of nesting
allowed in control flow
statements

¢ Maximum levels of inclusion
allowed using include files

¢ Maximum number of
constants allowed in an
enumeration

¢ Maximum number of macros
allowed in a translation unit

¢ Maximum number of
members allowed in a
structure

* Maximum levels of nesting
allowed in a structure

MISRA C:2012 Rule 5.1

MISRA C:2012 Rule 5.2
MISRA C:2012 Rule 5.3

MISRA C:2012 Rule 5.4

MISRA C:2012 Rule 5.5

These rules require uniqueness
of certain types of identifiers.
For instance, rule 5.1 requires
that external identifiers be
distinct.

If the difference between two
identifiers occurs beyond the
first num characters, the rule
checker considers the identifiers
as identical. You can modify the
parameter num separately for
external and internal identifiers.

For more information, see:

* “Modify Default Behavior of Bug Finder Checkers”
* -code-behavior-specifications

Benefits: You can adapt the checkers for MISRA C: 2012 Rules 1.1 and 5.1 to 5.5 to follow your

compiler specifications.

polyspacesetup Function: Integrate Polyspace with MATLAB in fewer

steps

Summary: In R2021a, you can integrate Polyspace with the current or earlier release of MATLAB® in
fewer steps. When you run the function polyspacesetup at the MATLAB command prompt, the
function looks for a Polyspace installation in the default location. If the installation exists, the function

Analysis Setup

integrates Polyspace with MATLAB. Specify the installation location explicitly only when you install
Polyspace in a nondefault location.

See Also:

* polyspacesetup
* “Integrate Polyspace with MATLAB and Simulink”

Benefits: Previously, to integrate Polyspace with Simulink, you provided the location of the Polyspace
installation folder. Starting in R2021a, providing the installation location is no longer required if you
install Polyspace in the default location.

pslinkrunCrossRelease Function: Analyze code generated in an earlier
release of Simulink by using a later release of Polyspace

Summary: In R20214a, you can run a Polyspace analysis of generated code from an earlier release of
Simulink by using the function pslinkrunCrossRelease. To use this cross-release workflow, your
Polyspace version must be later than your Simulink version and your Simulink must be R2020b or
later.

See :

* pslinkrunCrossRelease
* “Run Polyspace on Code Generated by Using Previous Releases of Simulink”

Benefits: Previously, you used the function pslinkrun in both cross-release and same release
workflows. Starting in R2021a, these two workflows are differentiated by introducing the function
pslinkrunCrossRelease explicitly for the cross-release workflow.

The compatibility of Polyspace with prior releases of Simulink is also simplified. Previously, the
compatibility of Polyspace with an earlier Simulink depended on the specific version of Polyspace and
Simulink. Starting in R2021a, you can integrate Polyspace with Simulink only if your Polyspace

version is later than your Simulink version, and you have Simulink from R2020b or later. See
“Polyspace Support of MATLAB and Simulink from Different Releases”.

Compatibility Considerations

The function pslinkrun no longer supports a cross-release workflow. Use the function
pslinkrunCrossRelease instead.

Functionality being removed: Compilation assistant

The Polyspace compilation assistant will be removed in a future release.

Compatibility Considerations

If you use the compilation assistant in your Polyspace project, clear the corresponding option. To
clear this option in the desktop interface, go to Tools > Preferences and then select the Project
and Results Folder tab.

Instead, when you set up your Polyspace project, you can:

1-5

R2021a

* Usethe Compiler (-compiler) option to specify a compiler that Polyspace supports natively if
you compile your code by using that compiler.

* Use polyspace-configure to trace your build command and to obtain your compiler
configuration. See polyspace-configure.

Changes in analysis options and binaries

-code-behavior-specifications takes only one file as argument
Behavior change

Starting in R2021a, this option only takes one XML file as argument. If you were specifying code
behaviors in multiple XML files, combine their content into one file and provide this file as argument
to the option.

See also -code-behavior-specifications.

-sources-encoding with value other than auto disables automatic detection of encoding
Behavior change

Starting in R2021a, if you explicitly specify a value with the option -sources-encoding (or use the
default value system which uses the default encoding of your OS), the analysis does not perform any
automatic detection of source file encoding. For instance, if you use -sources-encoding shift-
jis, the analysis internally converts your source files from Shift JIS (Shift Japanese Industrial
Standards) to UTF-8 encoding before processing them. If you see regressions from previous releases,
consider using -sources-encoding auto to reenable the automatic detection of source encoding.
Automatic detection is useful when your project contains, for instance, a mix of different encodings.

See also Source code encoding (-sources-encoding).

1-6

Analysis Results

Analysis Results
AUTOSAR C++14 Support: Check for 327 AUTOSAR C++14 rules
including 19 new rules in R2021a

Summary: In R2021a, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker

A2-7-3 All declarations of '"user-|AUTOSAR C++14 Rule
defined" types, static and non-|A2-7-3

static data members, functions
and methods shall be preceded
by documentation.

A2-8-1 A header file name should|AUTOSAR C++14 Rule
reflect the logical entity for|A2-8-1
which it provides declarations.

A2-8-2 An implementation file name|AUTOSAR C++14 Rule
should reflect the logical entity|A2-8-2
for which it provides definitions.

A8-4-5 "consume" parameters declared | AUTOSAR C++14 Rule
as X && shall always be moved|A8-4-5
from.

A8-4-6 "forward" parameters declared|AUTOSAR C++14 Rule
as T && shall always be|A8-4-6
forwarded.

A8-4-8 Output parameters shall not be|AUTOSAR C++14 Rule
used. A8-4-8

A8-4-9 "in-out" parameters declared as|AUTOSAR C++14 Rule
T & shall be modified. A8-4-9

A8-4-10 A parameter shall be passed by|AUTOSAR C++14 Rule
reference if it can't be NULL. A8-4-10

A8-5-4 If a class has a user-declared| AUTOSAR C++14 Rule
constructor that takes a|A8-5-4

parameter of type
std::initializer list, then it shall
be the only constructor apart
from special member function
constructors.

Al12-8-1 Move and copy constructors|/AUTOSAR C++14 Rule
shall move and respectively|Al2-8-1

copy base classes and data
members of a class, without any
side effects.

1-7

R2021a

AUTOSAR C++14 Rule Description Polyspace Checker

A12-8-2 User-defined copy and move|AUTOSAR C++14 Rule
assignment operators should|{Al12-8-2
use user-defined no-throw swap

function.

Al12-8-3 Moved-from object shall not be|AUTOSAR C++14 Rule
read-accessed. Al2-8-3

A13-5-3 User-defined conversion |AUTOSAR C++14 Rule
operators should not be used. Al13-5-3

A13-6-1 Digit sequences separators ‘|AUTOSAR C++14 Rule

shall only be used as follows: (1)|A13-6-1
for decimal, every 3 digits, (2)
for hexadecimal, every 2 digits,
(3) for binary, every 4 digits.

A15-4-1 Dynamic exception-specification| AUTOSAR C++14 Rule
shall not be used. Al5-4-1

Al15-4-4 A declaration of non-throwing|AUTOSAR C++14 Rule
function shall contain noexcept|Al5-4-4
specification.

A20-8-1 An already-owned pointer value|AUTOSAR C++14 Rule

shall not be stored in an|A20-8-1
unrelated smart pointer.

A27-0-4 C-style strings shall not be used. |AUTOSAR C++14 Rule
A27-0-4
Mb5-0-16 A pointer operand and any|AUTOSAR C++14 Rule

pointer resulting from pointer|M5-0-16
arithmetic using that operand
shall both address elements of
the same array.

See also “AUTOSAR C++14 Rules”.

CERT C++ Support: Check for memory management and programming
rule violations.

Summary: In R20214a, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker

OOP50-CPP Do not invoke virtual functions|CERT C++: 00P50-CPP
from constructors or destructors

EXP63-CPP Do not rely on the value of a|CERT C++: EXP63-CPP
moved-from object

MEMb56-CPP Do not store an already-owned|CERT C++: MEM56-CPP
pointer value in an unrelated
smart pointer

1-8

Analysis Results

See also “CERT C++ Rules”.

MISRA C++:2008 Support: Check for disallowed pointer arithmetic

Summary: In R2021a, you can look for violation of this MISRA C++:2008 rule in addition to

previously supported rules.

Rule

Description

Polyspace Checker

MISRA C++:2008 Rule 5-0-16

A pointer operand and any
pointer resulting from pointer
arithmetic using that operand
shall both address elements of
the same array.

MISRA C++:2008 Rule
5-0-16

See also “MISRA C++:2008 Rules”.

MISRA C:2012 Support: Checkers updated to account for MISRA
C:2012 Technical Corrigendum 1 and Amendment 2

Summary: In R2021a, Polyspace supports amendments to MISRA C:2012 rules in Technical
Corrigendum 1 and Amendment 2.

MISRA C:2012 Technical Corrigendum 1

MISRA C:2012 Technical Corrigendum 1 adds clarifications to existing rules. The clarifications have

led to changes in these checkers:

Rule

Description

Update in Technical
Corrigendum 1

MISRA C:2012 Rule 10.1

Operands shall not be of an
inappropriate essential type.

The rule now explicitly forbids
use of pointer types with logical
operands such as &&, || and !.

MISRA C:2012 Rule 10.5

The value of an expression
should not be cast to an
inappropriate essential type.

The rule now forbids casts of
integer constants with value 0
or 1 to essentially enum types.

MISRA C:2012 Rule 11.2

Conversions shall not be
performed between a pointer to
an incomplete type and any
other type.

The rule now takes into account
only the unqualified types that
the pointers point to. For
instance, if a pointer is assigned
to another and the only
difference between the pointed
types is a const qualifier, the
rule does not consider this
assignment as a conversion.

1-9

R2021a

1-10

Rule

Description

Update in Technical
Corrigendum 1

MISRA C:2012 Rule 11.4

A conversion should not be
performed between a pointer to
object and an integer type.

The rule now applies explicitly
to pointers to objects only.
Conversions between an integer
type and other pointer types
such as void* or pointers to
functions are flagged by other
rules.

MISRA C:2012 Rule 11.9

The macro NULL shall be the
only permitted form of integer
null pointer constant.

The rule allows the use of {0}
to initialize aggregates or
unions containing pointers.

MISRA C:2012 Rule 14.2

A for loop shall be well-formed.

The rule allows any form of
initialization of the loop counter
as long as the initialization does
not have other side effects.

MISRA C:2012 Amendment 2

MISRA C:2012 Amendment 2 addresses the new language features in the C11 standard. All updates
in Amendment 2 have been incorporated in the checkers.

dynamically by means of
Standard Library functions shall
be explicitly released.

Rule Description Update in Amendment 2

MISRA C:2012 Rule 1.4 Emergent language features This rule is new in Amendment
shall not be used. 2.

MISRA C:2012 Rule 12.1 The precedence of operators The rule now mandates a
within expressions should be violation if the operand of the
made explicit. _Alignof operator is not

enclosed in parenthesis.

MISRA C:2012 Rule 21.3 The memory allocation and The rule now flags uses of the
deallocation functions of aligned alloc function.
<stdlib.h> shall not be used.

MISRA C:2012 Rule 21.8 The Standard Library The rule no longer flags
termination functions of system.
<stdlib.h> shall not be used.

In addition to exit and abort,
the rule now flags Exit and
quick exit.

MISRA C:2012 Rule 21.21 |The Standard Library function |This rule is new in Amendment
system of <stdlib. h> shall 2.
not be used.

MISRA C:2012 Rule 22.1 All resources obtained The rule now flags memory

allocation using the
aligned alloc function if the
memory is not released.

Analysis Results

Guidelines: New checkers for software complexity defects

Summary: In R2021a, Polyspace has a new category of checkers called Guidelines. This category
contains the Software Complexity checkers. Reduce the software complexity metrics of your code
by activating these new checkers. See “Reduce Software Complexity by Using Polyspace Checkers”.

The Software Complexity checkers include:

Defect Description

Number of Calling Functions Exceeds|The number of distinct callers of a function is
Threshold greater than the defined threshold.

Number of Called Functions Exceeds|The number of distinct function calls within the
Threshold body of a function is greater than the defined

threshold.

Comment density below threshold

The comment density of the module falls below
the specified threshold.

Call Tree Complexity Exceeds Threshold

The call tree complexity of a file is greater than
the defined threshold.

Number of Lines Within body Exceeds

Threshold

The number of lines in the body of a function is
greater than the defined threshold.

Exceeds Threshold

Number of Executable Lines Exceeds|The number of executable lines in the body of a

Threshold function is greater than the defined threshold.

Number of Call Levels Exceeds|The nesting depth of control structures in a

Threshold function is greater than the defined nesting depth
threshold of a function.

Number of GOTO Statements Exceeds|The number of goto statements in a function is

Threshold greater than the defined threshold.

Number of Local Static variables|The number of local static variables in a function

Exceeds Threshold is greater than the defined threshold.

Number of Local Nonstatic Variables|The number of function calls in a function is

greater than the defined call

threshold of a function.

occurrence

Number of Call Occurrences Exceeds

Threshold

The number of function calls in a function is
greater than the defined call occurrence
threshold of a function.

Number of Function Parameters Exceeds
Threshold

The number of arguments of a function is greater
than the defined threshold.

Number of Paths Exceeds Threshold

The number of static paths in a function is
greater than the defined threshold.

Number of Return Statements Exceeds|The number of return statements in a function
Threshold is greater than the defined threshold.

Number of Instructions Exceeds|The number of instructions in a function is
Threshold greater than the defined threshold.

Number of Lines Exceeds Threshold

The number of total lines in a file is greater than
the defined threshold.

1-11

R2021a

1-12

Defect Description

Cyclomatic Complexity Exceeds|The cyclomatic complexity of a function is greater

Threshold than the defined cyclomatic complexity threshold
of a function.

Language Scope Exceeds Threshold The language scope of a function is greater than
the defined threshold.

In the Polyspace user interface, activate these checkers in the Coding Standard & Code Metric
node of the Configuration pane. Alternatively, in the Checkers selection window, select the
Guidelines > Software Complexity checkers.

To activate these checkers in the command-line, use the analysis option Check Guidelines (-
guidelines). To specify a subset of these checkers with modified thresholds by using a checkers
selection file, use Set checkers by file (-checkers-selection-file).

Compatibility Considerations

Each of these software complexity checkers corresponds to a code metric. When you import
comments from a previous run by using the command polyspace-comments-import, Polyspace
copies any review information on a code metric in the previous result to the corresponding software
complexity checker in the current result. If the current result contains the same code metric, the
review information is also copied to the code metric.

JSF AV C++ Support: Check for cases where pass-by-reference is
preferred to pass-by-pointer

Summary: In R2021a, you can check for this JSF® AV C++ rule in addition to previously supported
rules.

Rule Description

AV Rule 117 Arguments should be passed by reference if
NULL values are not possible.

See also “JSF AV C++ Coding Rules”.

New Bug Finder Checkers: Check for inefficient string operations,
noncompliance with AUTOSAR Standard specifications, and other
issues

Summary: In R2021a, you can check for these new Bug Finder defects in your code.

Defect Description

Const rvalue reference parameter may|The const-ness of an rvalue reference prevents
cause unnecessary data copies move operation and causes a more expensive
copy operation instead.

Analysis Results

Defect

Description

Expensive use of std::string methods
instead of more efficient overload

An std: :string method uses a single character
string literal, that is, a const char* object of
length one, instead of using a single quoted
character.

std::string operator+() instead of a

simple append

Expensive use of std::string with|Use of std::string with empty string literal

empty string literal can be replaced by less expensive calls to
std::basic string member functions.

Expensive use of non-member|The non-member std::string operator+()

function is called when the append (or +=)
method would have been more efficient.

Expensive local variable copy

A local variable is created by copy from a const
reference and not modified later.

Expensive logical operation

A logical operation requires the evaluation of
both operands because of their order, resulting in
inefficient code.

File does not compile

A file has a compilation error.

Noncompliance with AUTOSAR library

A call to an AUTOSAR RTE API function violates
AUTOSAR Standard specifications.

Use of new or make unique instead of
more efficient make shared

Creating a shared ptr pointer with new or
make_unique causes an unnecessary additional
memory allocation.

For all defect checkers, see “Defects”.

Changes to coding rules checking

In R2021a, coding rules checking has improved across various standards. For instance, you can check
for both MISRA C:2004 and MISRA C:2012 rules in the same run.

These changes have been made in the checking of previously supported rules.

Rule Description

Change

MISRA C:2012 Rule 1.1

An implementation-defined
behavior on which the output of
the program depends shall be
documented and understood.

You can now change the
thresholds used in the rule
checking using the option -
code-behavior-
specifications.

MISRA C:2012 Rule 1.3

behaviour.

There shall be no occurrence of
undefined or critical unspecified

The checker no longer flags all
instances of the offsetof
macro, but only the instances
that cause undefined behavior.
For instance, if the second
argument of offsetof is not a
field of the first argument or is a
bitfield, the checker raises a
violation.

1-13

R2021a

1-14

Rule

Description

Change

MISRA C: 2012 Rule 5.x

Rules that ensure uniqueness of
identifiers.

You can now change the
thresholds used in the rule
checking using the option -
code-behavior-
specifications.

MISRA C:2012 Rule 10.3

The value of an expression shall
not be assigned to an object
with a narrower essential type
or of a different essential type
category.

The checker now detects
implicit conversions when a
structure is initialized using
aggregate initialization. For
instance, in this code snippet,
the initialization of structure a
results in an implicit conversion
from the essentially signed type
of x to the essentially unsigned
type of the field a_

typedef struct tag A
{
unsigned char a_;
unsigned char b_;
}tag_A;

int x = 1;

tag_ A a = {x,0}; //Noncompli

ant

MISRA C:2012 Rule 10.4

Both operands of an operator in
which the usual arithmetic
conversions are performed shall
have the same essential type
category.

The checker treats macros such
as TRUE or FALSE that resolve
to 0 or 1 as essentially boolean.

AUTOSAR C++14 Rule
A5-0-3

The declaration of objects shall
contain no more than two levels
of pointer indirection

The checker no longer flags the
use of objects with more than
two levels of pointer indirection.

Analysis Results

Rule

Description

Change

AUTOSAR C++14 Rule
A8-5-2

Braced-initialization {}, without
equals sign, shall be used for
variable initialization.

The checker now adheres more
strictly to the AUTOSAR C++14
specifications. The checker flags
non-uniform initializations such
as:

e Type objl = obj2;
e Type objl(obj2);

Even if obj1 and obj2 have the
same types. Previously, the
checker raised a flag only if the
types were different.

The checker allows an exception
for these cases:

* Initialization of variables
with type auto using a
simple assignment

* Initialization of reference
types

* Declarations with global
scope using the format Type
a() where Type is a class
type with default
constructor. The analysis
interprets a as a function
returning the type Type.

* Loop variable initialization in
OpenMP parallel for loops,
that is, in for loop
statements that immediately
follow #pragma omp
parallel for

AUTOSAR C++14 Rule
Al0-1-1

Classes shall not be derived
from more than one base class
which is not an interface class.

The checker now expands
interface classes to include
constructors and destructors set
to =default or =delete.

AUTOSAR C++14 Rule
Al2-6-1

All class data members that are
initialized by the constructor
shall be initialized using
member initializers.

The checker no longer flags
constructors that use default
member initialization.

AUTOSAR C++14 Rule
Al2-8-7

Assignment operators should be
declared with the ref-qualifier
&.

The checker no longer flags
deleted assignment operators
without the ref-qualifier &.

1-15

R2021a

1-16

Rule

Description

Change

AUTOSAR C++14 Rule
A20-8-5 and AUTOSAR C++14
Rule A20-8-6

std: :make unique

(std: :make shared) shall be
used to construct objects owned
by std::unique ptr
(std::shared ptr).

The checkers now also apply to
boost::unique ptrand
boost::shared ptr.

AUTOSAR C++14 Rule
M5-0-15

Array indexing shall be the only
form of pointer arithmetic.

The checker no longer flags
arithmetic operations such as
increment and decrement on
iterators that point to elements
in containers.

CERT C: Rule INT31-C

Ensure that integer conversions
do not result in lost or
misinterpreted data

The checker now detects
comparisons of time t
variables with variables of other
types. time tis an
implementation-defined type,
therefore, these comparisons
can lead to unexpected results.

CERT C: Rec. MEMO4-C Beware of zero-length The checker now performs more
allocations direct checks for possibilities of
zero-length memory allocations
and adheres more strictly to the
CERT C standard.
CERT C++: DCL53-CPP Do not write syntactically The checker no longer flags

ambiguous declarations.

ambiguous declarations with
global scope. For instance, the
analysis does not flag
declarations with global scope
using the format Type a()
where Type is a class type with
a default constructor. The
analysis interprets a as a
function returning the type

Type.

CERT C: Rule EXP37-C

Call functions with the correct
number and type of arguments

This checker now flags:

* Calls with complex
arguments to math functions
that do not take a complex
input

+ Calls to functions whose
provided or deduced
prototypes do not match
their definitions.

CERT C++: EXP37-C

Call functions with the correct
number and type of arguments

This checker now flags the calls
to an extern "C" function if its
prototypes does not match the
definition.

Analysis Results

Rule

Description

Change

Checkers from different C++
standards:

* MISRA C++:2008 Rule
3-2-2

» AUTOSAR C++14 Rule
M3-2-2

* CERT C++: DCL6O-CPP

Checkers for the one definitions
rule in C++.

Starting in R2021a, in the
declarations that violate these
rules, the violations are flagged
on the keywords instead of the
variable names.

Starting in R2021a, these
checkers are no longer raised
on unused code such as:

* Noninstantiated templates

e Uncalled static or extern
functions

¢ Uncalled and undefined local
functions

* Unused types and variables

Checkers from different C++
standards:

* MISRA C++:2008 Rule
3-2-1

» AUTOSAR C++14 Rule
M3-2-1

Checkers that flag declaration
of an object with incompatible
types across modules.

Starting in R2021a, Polyspace
considers two types to be
compatible if they have the
same size and signedness in the
environment that you use. For
instance, if you specify -target
as i386, Polyspace considers
long and int to be compatible

types.

Starting in R2021a, these
checkers are no longer raised
on unused code such as:

* Noninstantiated templates

e Uncalled static or extern
functions

¢ Uncalled and undefined local
functions

* Unused types and variables

1-17

R2021a

1-18

Rule

Description

Change

Checkers from different C++
standards:

« MISRA C++2008:
e MISRA C++:2008 Rule
2-10-5

« MISRA C++:2008 Rule
3-2-4

« AUTOSAR C++14:
* AUTOSAR C++14 Rule
A2-10-4

* AUTOSAR C++14 Rule
A2-10-5

* AUTOSAR C++14 Rule
M3-2-4

Checkers that check for
inconsistent declaration and
definitions, and name re-use
across different modules.

Starting in R2021a, these
checkers are no longer raised
on unused code such as:

* Noninstantiated templates

¢ Uncalled static or extern
functions

e Uncalled and undefined local
functions

* Unused types and variables

JSF AV C++ Rule 137

Starting in R2021a, this checker
is raised on declarations of
nonstatic objects that you use in
only one file. The checker is
raised even if you analyze a
singe file. The checker is not
raised on the declarations of
objects that remain unused,
such as:

* Noninstantiated templates

e Uncalled static or extern
functions

e Uncalled and undefined local
functions

* Unused types and variables

Compatibility Considerations

If you checked your code for the preceding rules, you might see a change in the number of violations.

Updated Bug Finder defect checkers

In R2021a, these defect checkers have been updated.

Analysis Results

Defect

Description

Update

Ambiguous declaration
syntax

Declaration syntax can be
interpreted as object
declaration or part of function
declaration

The checker no longer flags
ambiguous declarations with
global scope. For instance, the
analysis does not flag
declarations with global scope
using the format Type a()
where Type is a class type with
a default constructor. The
analysis interprets a as a
function returning the type

Type.

Format string specifiers
and arguments mismatch

Format specifiers in printf-like
functions do not match
corresponding arguments

In cases where integer
promotion modifies the
perceived data type of an
argument, the analysis result
shows both the original type and
the type after promotion. The
format specifier has to match
the type after integer
promotion.

1-19

R2021a

Reviewing Results

1-20

Simulink Block Annotation: Add multiple Polyspace annotations
corresponding to multiple types of Polyspace results

Summary: In R20214a, you can annotate a Simulink block with multiple annotations for multiple types
of Polyspace results through the Polyspace Annotation window. For instance, consider a block that
is annotated for a MISRA C violation. If this block is then flagged for a defect violation, you can add
an annotation corresponding to the defect violation without overwriting the previous annotation for
the MISRA C violation. To add these two annotations, open the Polyspace Annotation window twice
and each time, annotate for a specific type of result. These annotations are appended to each other
and can be seen in the Result Details pane of Polyspace User Interface. See “Annotate Blocks to
Justify Issues”

Benefits: Previously, if you added a new annotation to an already annotated Simulink block,
Polyspace overwrote the existing annotation. Starting in R2021a, adding an annotation to a
previously annotated Simulink block appends the new annotation to the existing annotation.

R2020b

Version: 3.3
New Features
Bug Fixes

Compatibility Considerations

R2020b

Analysis Setup

2-2

Compiler Support: Set up Polyspace analysis for code compiled by
Renesas SH C compilers

Summary: If you build your source code by using Renesas® SH C compilers, in R2020b, you can
specify the target name sh, which corresponds to SuperH targets, for your Polyspace analysis.

Target Environment

Compiler renesas o

Target processor type fsh o

See also Renesas Compiler (-compiler renesas).

Benefits: You can now set up a Polyspace project without knowing the internal workings of Renesas
SH C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Cygwin Support: Create Polyspace projects automatically by using
Cygwin 3.x build commands

Summary: In R2020b, the polyspace-configure command supports version 3.x of Cygwin™
(versions 3.0, 3.1, and so on).

See also Check if Polyspace Supports Build Scripts.
Benefits: Using the polyspace-configure command, you can trace build scripts that are executed

at a Cygwin 3.x command line and create a Polyspace project with the source files and compilation
options automatically specified.

C++17 Support: Run Polyspace analysis on code that has C++17
features

Summary: In R2020b, Polyspace can interpret the majority of C++17-specific features.

Target Language
Source code language |CPP v
C++ standard version |tpp17 D
See also:

* (C++ standard version (-cpp-version)
* C/C++ Language Standard Used in Polyspace Analysis

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/renesascompilercompilerrenesas.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceconfigurecommand.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/check-if-polyspace-supports-windows-build-command.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/cstandardversioncppversion.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/cc-language-standard-used-in-polyspace-analysis.html

Analysis Setup

* C++17 Language Elements Supported in Polyspace

Benefits: You can now set up a Polyspace analysis for code containing C++17-specific language
elements. Previously, some C++17 specific elements were not recognized and caused compilation
errors. See .

Modifying Checker Behavior: Check for non-initialized buffers when
passed by pointer to certain functions

Summary: In R2020Db, you can indicate that pointer arguments to some functions must point to
initialized buffers. By default, the checker Non-initialized variable checks a pointer for an
initialized buffer only when you dereference the pointer. A function call such as:

int var; func(&var);

is not flagged for non-initialization because you might initialize the variable var in func. Starting in
R2020b, you can specify a list of functions whose pointer arguments must be checked for initialized
buffers.

For more information, see:

* -code-behavior-specifications

» Extend Checkers for Initialization to Check Function Arguments Passed by Pointers (Polyspace
Bug Finder Server)

Benefits: Suppose that you consider some function calls as part of the system boundary and you
want to make sure that you pass initialized buffers across the boundary. For instance, the Run-Time
environment or Rte functions in AUTOSAR allow a software component to communicate with other
software components. You might want to ensure that pointer arguments to these functions point to
initialized buffers. You can now use Bug Finder to find uninitialized buffers passed through pointers
to these functions.

polyspacePackNGo Function: Generate and package Polyspace option
files from a Simulink model

Summary: In R2020b, you can package Polyspace option files along with code generated from a
Simulink model, and then analyze the code on a different machine in a distributed workflow. After
packaging the generated code, create and archive options files required for a Polyspace analysis by
using the polyspacePackNGo function.

See also:

* polyspacePackNGo

* Run Polyspace Analysis on Generated Code by Using Packaged Options Files (Polyspace Code
Prover) (Simulink) (Polyspace Code Prover Server) (Polyspace Bug Finder Server)

Benefits: In a distributed workflow, a Simulink user generates code from a model and sends the code
to another development environment. In this environment, a Polyspace user analyzes the generated
code by using design ranges and other model-specific information. Previously, in this distributed
workflow, you configured the Polyspace analysis options manually. Starting in R2020b, you do not
have to manually create the option files when analyzing generated code by using Polyspace in a
distributed workflow.

2-3

https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/c17-language-elements-supported-in-polyspace.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/noninitializedvariable.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/codebehaviorspecifications.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/extend-checkers-for-initialization-to-check-arguments-passed-by-reference.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspacepackngo.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/analyze-generated-code-by-using-packaged-options-files.html

R2020b

2-4

Polyspace and MATLAB Integration: Integrate Polyspace with MATLAB
programmatically without user interaction

Summary: In R2020b, use simpler steps to integrate Polyspace and MATLAB. Instead of browsing to
a specific subfolder of the Polyspace installation folder, and then running the polyspacesetup
function, run polyspacesetup from any folder:

polyspacesetup('install', 'polyspaceFolder', folder);

folder is the location of the Polyspace installation in your machine. To integrate Polyspace with
MATLAB without user interaction, use:

polyspacesetup('install', 'polyspaceFolder', folder, 'silent', true);
See:

* polyspacesetup
» Integrate Polyspace with MATLAB and Simulink (Polyspace Code Prover)

Benefits: Previously, integrating Polyspace with MATLAB required user interaction. Starting in
R2020b, you can perform the integration programmatically and silently.

polyspace.ModelLinkOptions Object: Configure object to analyze code
generated as a model reference

Summary: In R2020b, you can configure a polyspace.ModelLinkOptions object to analyze code
generated as a model reference by using the new optional argument asModelRef. To run a Polyspace
analysis on the code generated as a model reference, create a polyspace.ModelLinkOptions
object and set the asModelRef flag to true. See also:

* polyspace.ModelLinkOptions
* Analyze Code Generated as Model Reference (Polyspace Code Prover)

Benefits: Previously, the class polyspace.ModelLinkOptions did not support analyzing code
generated as model reference. Starting in R2020b, you can run a Polyspace analysis on code
generated as a model reference by using the class polyspace.ModelLinkOptions. You can also set
the options for the Polyspace analysis by using a pslinkoptions object.

Configuration from Build System: Generate a project file or analysis
options file by using a JSON compilation database

Summary: In R2020Db, if your build system supports the generation of a JSON compilation database,
you can create a Polyspace project file or an analysis options file from your build system without
tracing your build process. After you generate the JSON compilation database file, pass this file to
polyspace-configure by using the option - compilation-database to extract your build
information.

For more information on compilation databases, see JSON Compilation Database.

Benefits: Previously, you had to invoke your build command and trace your build process to extract
the build information. For some build systems such as Bazel, polyspace-configure could not

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspacesetup.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspace.modellinkoptions-class.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspace.modellinkoptions-class.html#mw_5fa690a7-41ee-44cd-9846-a15b756882df
https://clang.llvm.org/docs/JSONCompilationDatabase.html

Analysis Setup

always trace the build process, resulting in errors when running an analysis by using the generated
options file.

Configuration from Build System: Specify how Polyspace imports
compiler macro definitions

Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, you can specify how Polyspace imports the
compiler macro definitions.

Use option -import-macro-definitions and specify:

* none — Skip the import of macro definition. You can provide macro definitions manually instead.
+ from-whitelist — Use a Polyspace white list to query your compiler for macro definitions.

+ from-source-token — Use all non-keyword tokens in your source files to query your compiler
for macro definitions.

See also polyspace-configure.

Benefits: Previously, Polyspace used all non-keyword tokens in your source files to query your
compiler for macro definitions each time that you traced your build command. You now have greater
control on the import of macro definitions.

Configuration from Build System: Compiler configuration cached from
prior runs for improved performance

Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, Polyspace caches your compiler
configuration. If your compiler configuration does not change, Polyspace reuses the cached
configuration during subsequent runs of polyspace-configure.

See also polyspace-configure.

Benefits: Previously, Polyspace did not cache your compiler configuration. Instead, during every run
of polyspace-configure, Polyspace queried your compiler for the size of fundamental types,
compiler macro definitions, and other compiler configuration information. Starting R2020b, the
caching improves the later polyspace-configure runs.

Changes in analysis options and binaries

XML syntax with option -code-behavior-specifications changed
Warns

The option -code-behavior-specifications takes an XML file as argument. You can use this
XML file to specify whether a certain function must be subjected to special checks. For instance, you
can specify that a function must not be used altogether.

In R2020b, the XML syntax changed slightly. To associate the behavior FORBIDDEN FUNC with a
function funcName, instead of the syntax:

<function name="funcName" behavior="FORBIDDEN FUNC">

2-5

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceconfigurecommand.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceconfigurecommand.html

R2020b

2-6

Use the syntax:

<function name="funcName">
<behavior name="FORBIDDEN FUNC">
</function>

See also -code-behavior-specifications.

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/codebehaviorspecifications.html

Analysis Results

Analysis Results
AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules
including 61 new rules in R2020b

Summary: In R2020b, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-1 A project shall not contain AUTOSAR C++14 Rule
instances of non-volatile AO-1-1

variables being given values
that are not subsequently used.

A0-1-3 Every function defined in an AUTOSAR C++14 Rule
anonymous namespace, or static|AQ-1-3

function with internal linkage,
or private member function

shall be used.

A2-7-2 Sections of code shall not be AUTOSAR C++14 Rule
"commented out". A2-7-2

A2-10-4 The identifier name of a non- AUTOSAR C++14 Rule
member object with static A2-10-4

storage duration or static
function shall not be reused
within a namespace.

A2-10-5 An identifier name of a function |[AUTOSAR C++14 Rule
with static storage duration or a |[A2-10-5

non-member object with
external or internal linkage
should not be reused.

A3-1-5 A function definition shall only |AUTOSAR C++14 Rule
be placed in a class definition if |[A3-1-5

(1) the function is intended to
be inlined (2) it is a member
function template (3) it is a
member function of a class

template.

A3-1-6 Trivial accessor and mutator AUTOSAR C++14 Rule
functions should be inlined. A3-1-6

A3-8-1 An object shall not be accessed |AUTOSAR C++14 Rule
outside of its lifetime. A3-8-1

A5-1-6 Return type of a non-void return |AUTOSAR C++14 Rule

type lambda expression should |A5-1-6
be explicitly specified.

2-7

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea011.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea011.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea013.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea013.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2104.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2104.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2105.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2105.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea315.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea315.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea316.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea316.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea381.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea381.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea516.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea516.html

R2020b

AUTOSAR C++14 Rule Description Polyspace Checker
A5-1-8 Lambda expressions should not |AUTOSAR C++14 Rule
be defined inside another A5-1-8
lambda expression.
A5-1-9 Identical unnamed lambda AUTOSAR C++14 Rule
expressions shall be replaced A5-1-9
with a named function or a
named lambda expression.
A5-2-1 dynamic cast should not be AUTOSAR C++14 Rule
used. A5-2-1
A5-3-1 Evaluation of the operand to the |[AUTOSAR C++14 Rule
typeid operator shall not contain|A5-3-1
side effects.
A5-3-2 Null pointers shall not be AUTOSAR C++14 Rule
dereferenced. A5-3-2
A5-10-1 A pointer to member virtual AUTOSAR C++14 Rule
function shall only be tested for |A5-10-1
equality with null-pointer-
constant.
ABG-2-1 Move and copy assignment AUTOSAR C++14 Rule
operators shall either move or |A6-2-1
respectively copy base classes
and data members of a class,
without any side effects.
AG-2-2 Expression statements shall not |AUTOSAR C++14 Rule
be explicit calls to constructors |A6-2-2
of temporary objects only.
A6-5-3 Do statements should not be AUTOSAR C++14 Rule
used. A6-5-3
A7-1-1 Constexpr or const specifiers AUTOSAR C++14 Rule
shall be used for immutable A7-1-1
data declaration.
A7-1-2 The constexpr specifier shall be |AUTOSAR C++14 Rule
used for values that can be A7-1-2
determined at compile time.
A7-1-5 The auto specifier shall not be |AUTOSAR C++14 Rule
used apart from following cases: |A7-1-5
(1) to declare that a variable has
the same type as return type of
a function call, (2) to declare
that a variable has the same
type as initializer of non-
fundamental type, (3) to declare
parameters of a generic lambda
expression, (4) to declare a
function template using trailing
return type syntax.

2-8

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea518.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea518.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea519.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea519.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea532.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea532.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea5101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea5101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea621.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea621.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea622.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea622.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea653.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea653.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea711.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea711.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea712.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea712.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea715.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea715.html

Analysis Results

AUTOSAR C++14 Rule

Description

Polyspace Checker

A7-6-1 Functions declared with the AUTOSAR C++14 Rule
[[noreturn]] attribute shall not [A7-6-1
return.

A8-4-4 Multiple output values froma |AUTOSAR C++14 Rule
function should be returned as a|A8-4-4
struct or tuple.

A8-4-14 Interfaces shall be precisely and [AUTOSAR C++14 Rule
strongly typed. A8-4-14

Al11-0-1 A non-POD type should be AUTOSAR C++14 Rule
defined as class. Al1-0-1

A12-0-2 Bitwise operations and AUTOSAR C++14 Rule
operations that assume data Al2-0-2
representation in memory shall
not be performed on objects.

Al12-1-2 Both NSDMI and a non-static AUTOSAR C++14 Rule
member initializer in a Al2-1-2
constructor shall not be used in
the same type.

Al12-1-6 Derived classes that do not need [AUTOSAR C++14 Rule
further explicit initialization and |[A12-1-6
require all the constructors
from the base class shall use
inheriting constructors.

Al12-4-2 If a public destructor of a class |AUTOSAR C++14 Rule
is non-virtual, then the class Al2-4-2
should be declared final.

Al12-8-4 Move constructor shall not AUTOSAR C++14 Rule
initialize its class members and |Al12-8-4
base classes using copy
semantics.

A12-8-7 Assignment operators should be |AUTOSAR C++14 Rule
declared with the ref-qualifier |A12-8-7
&.

A13-5-5 Comparison operators shall be |AUTOSAR C++14 Rule
non-member functions with Al13-5-5
identical parameter types and
noexcept.

A14-5-2 Class members that are not AUTOSAR C++14 Rule
dependent on template class Al4-5-2

parameters should be defined in
a separate base class.

2-9

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea761.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea761.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea844.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea844.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea8414.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea8414.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1101.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1202.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1202.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1212.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1212.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1216.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1216.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1242.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1242.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1284.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1284.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1287.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1287.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1355.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1355.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1452.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1452.html

R2020b

2-10

AUTOSAR C++14 Rule

Description

Polyspace Checker

Al14-5-3

A non-member generic operator
shall only be declared in a
namespace that does not
contain class (struct) type, enum
type or union type declarations.

AUTOSAR C++14 Rule
Al4-5-3

Al15-1-1

Only instances of types derived
from std::exception should be
thrown.

AUTOSAR C++14 Rule
Al5-1-1

A15-1-3

All thrown exceptions should be
unique.

AUTOSAR C++14 Rule
Al5-1-3

A15-2-1

Constructors that are not
noexcept shall not be invoked
before program startup.

AUTOSAR C++14 Rule
Al15-2-1

A15-3-3

Main function and a task main
function shall catch at least:
base class exceptions from all
third-party libraries used,
std::exception and all otherwise
unhandled exceptions.

AUTOSAR C++14 Rule
Al5-3-3

Al15-3-4

Catch-all (ellipsis and
std::exception) handlers shall be
used only in (a) main, (b) task
main functions, (c) in functions
that are supposed to isolate
independent components and
(d) when calling third-party
code that uses exceptions not
according to AUTOSAR C++14
guidelines.

AUTOSAR C++14 Rule
Al5-3-4

Al15-4-2

If a function is declared to be
noexcept, noexcept(true) or
noexcept(<true condition>),
then it shall not exit with an
exception.

AUTOSAR C++14 Rule
Al5-4-2

A15-4-3

Function's noexcept
specification shall be either
identical or more restrictive
across all translation units and
all overriders.

AUTOSAR C++14 Rule
Al15-4-3

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1453.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1453.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1513.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1513.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1521.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1533.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1533.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1542.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1542.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1543.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1543.html

Analysis Results

AUTOSAR C++14 Rule Description Polyspace Checker
A15-5-1 All user-provided class AUTOSAR C++14 Rule
destructors, deallocation Al5-5-1
functions, move constructors,
move assignment operators and
swap functions shall not exit
with an exception. A noexcept
exception specification shall be
added to these functions as
appropriate.
A18-5-9 Custom implementations of AUTOSAR C++14 Rule
dynamic memory allocation and |A18-5-9
deallocation functions shall
meet the semantic requirements
specified in the corresponding
"Required behaviour" clause
from the C++ Standard.
A18-5-10 Placement new shall be used AUTOSAR C++14 Rule
only with properly aligned A18-5-10
pointers to sufficient storage
capacity.
A18-5-11 "operator new" and "operator |AUTOSAR C++14 Rule
delete" shall be defined A18-5-11
together.
A18-9-2 Forwarding values to other AUTOSAR C++14 Rule
functions shall be done via: (1) |A18-9-2
std::move if the value is an
rvalue reference, (2)
std::forward if the value is
forwarding reference.
A18-9-4 An argument to std::forward AUTOSAR C++14 Rule
shall not be subsequently used. |A18-9-4
A20-8-2 A std::unique ptr shall be used |AUTOSAR C++14 Rule
to represent exclusive A20-8-2
ownership.
A20-8-3 A std::shared ptr shall be used |AUTOSAR C++14 Rule
to represent shared ownership. |A20-8-3
A20-8-5 std::make unique shall be used |AUTOSAR C++14 Rule
to construct objects owned by |A20-8-5
std::unique ptr.
A20-8-6 std::make shared shall be used |AUTOSAR C++14 Rule
to construct objects owned by |A20-8-6
std::shared ptr.
A26-5-2 Random number engines shall |AUTOSAR C++14 Rule

not be default-initialized.

A26-5-2

2-11

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1551.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1551.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1859.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1859.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18510.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18510.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea18511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1892.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1892.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1894.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea1894.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2082.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2082.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2083.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2083.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2085.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2085.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2086.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2086.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2652.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2652.html

R2020b

AUTOSAR C++14 Rule Description Polyspace Checker

A27-0-2 A C-style string shall guarantee |AUTOSAR C++14 Rule
sufficient space for data and the |A27-0-2
null terminator.

A27-0-3 Alternate input and output AUTOSAR C++14 Rule
operations on a file stream shall |[A27-0-3

not be used without an
intervening flush or positioning
call.

M0-1-4 A project shall not contain non- |AUTOSAR C++14 Rule
volatile POD variables having |MO-1-4
only one use.

MO0-3-2 If a function generates error AUTOSAR C++14 Rule
information, then that error MO-3-2
information shall be tested.

M7-5-2 The address of an object with AUTOSAR C++14 Rule

automatic storage shall not be |M7-5-2
assigned to another object that
may persist after the first object
has ceased to exist.

M9-6-4 Named bit-fields with signed AUTOSAR C++14 Rule
integer type shall have a length |M9-6-4
of more than one bit.

M15-1-1 The assignment-expression of a |AUTOSAR C++14 Rule
throw statement shall not itself |M15-1-1
cause an exception to be

thrown.

M15-3-1 Exceptions shall be raised only |AUTOSAR C++14 Rule
after start-up and before M15-3-1
termination.

M15-3-4 Each exception explicitly thrown|AUTOSAR C++14 Rule

in the code shall have a handler |M15-3-4
of a compatible type in all call
paths that could lead to that
point.

See also AUTOSAR C++14 Rules.

CERT C Support: Check for missing const-qualification and use of
hardcoded numbers

Summary: In R2020b, you can look for violations of these CERT C recommendations in addition to
previously supported rules.

CERT C Rule Description Polyspace Checker

DCL00-C Const-qualify immutable objects |[CERT C: Rec. DCL0OO-C

See also CERT C Rules and Recommendations.

2-12

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2702.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2702.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2703.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2703.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem752.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem752.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem964.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem964.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/autosar-c-14.html
https://wiki.sei.cmu.edu/confluence/x/T9cxBQ
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/ref/certcrec.dcl00c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/cert-c-rules-and-recommendations.html

Analysis Results

CERT C++ Support: Check for exception handling issues, memory

management problems, and other rule violations

Summary: In R2020b, you can look for violations of these CERT C++ rules in addition to previously

supported rules.

CERT C++ Rule

Description

Polyspace Checker

ERR58-CPP Handle all exceptions thrown CERT C++: ERR58-CPP
before main() begins executing

MEM54-CPP Provide placement new with CERT C++: MEM54-CPP
properly aligned pointers to
sufficient storage capacity

MEM55-CPP Honor replacement dynamic CERT C++: MEM55-CPP
storage management
requirements

MSC53-CPP Do not return from a function |CERT C++: MSC53-CPP
declared [[noreturn]]

ERR55-CPP Honor exception specifications |CERT C++: ERR55-CPP

See also CERT C++ Rules.

MISRA C++:2008 Support: Check for commented out code, variables
used once, exception handling issues, and other rule violations

Summary: In R2020b, you can look for violations of these MISRA C++:2008 rules in addition to

previously supported rules.

MISRA C++:2008 Rule

Description

Polyspace Checker

shall only be declared in a
namespace that is not an
associated namespace.

0-1-4 A project shall not contain non- |MISRA C++:2008 Rule
volatile POD variables having 0-1-4
only one use.

0-3-2 If a function generates error MISRA C++:2008 Rule
information, then that error 0-3-2
information shall be tested.

2-7-2 Sections of code should not be [MISRA C++:2008 Rule
"commented out" using C-style [2-7-2
comments.

2-7-3 Sections of code should not be |[MISRA C++:2008 Rule
"commented out" using C++- 2-7-3
style comments.

14-5-1 A non-member generic function |MISRA C++:2008 Rule

14-5-1

2-13

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR58-CPP.+Handle+all+exceptions+thrown+before+main%28%29+begins+executing
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcerr58cpp.html
https://wiki.sei.cmu.edu/confluence/x/a3s-BQ
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem54cpp.html
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem55cpp.html
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmsc53cpp.html
https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR55-CPP.+Honor+exception+specifications
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcerr55cpp.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/cert-c-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule032.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule272.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule273.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule273.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1451.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1451.html

R2020b

MISRA C++:2008 Rule Description Polyspace Checker

15-1-1 The assignment-expression of a |MISRA C++:2008 Rule
throw statement shall not itself |15-1-1
cause an exception to be

thrown.

15-3-1 Exceptions shall be raised only |MISRA C++:2008 Rule
after start-up and before 15-3-1
termination of the program.

15-3-4 Each exception explicitly thrown [MISRA C++:2008 Rule

in the code shall have a handler |15-3-4
of a compatible type in all call
paths that could lead to that
point.

See also MISRA C++:2008 Rules.

JSF AV C++ Support: Check for commented out code and methods that
can be inlined

Summary: In R2020b, you can check for these JSF AV C++ rules in addition to previously supported

rules.

Rule Description

122 Trivial accessor and mutator functions should be
inlined.

127 Code that is not used (commented out) shall be
deleted.

See also JSF AV C++ Coding Rules.

MISRA C Support: Check for commented out code

Summary: In R2020b, you can look for violations of these MISRA C rules and directives in addition
to previously supported rules and directives.

MISRA C Rule Description Polyspace Checker

MISRA C:2004 Rule 2.4 Sections of code should not be |[MISRA C:2004 Rule 2.4
"commented out".

See also MISRA C :2004 and
MISRA AC AGC Coding Rules.

MISRA C:2012 Dir 4.4 Sections of code should not be |MISRA C:2012 Dir 4.4
"commented out".

See also MISRA C :2012 Directives and Rules.

2-14

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1531.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1534.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/misra-c2008-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/supported-.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2012dir4.4.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/misra-c-2012-reference.html

Analysis Results

New Bug Finder Defect Checkers: Check for post-C++11 defects such
as problematic move operations, missing constexpr, and noexcept
violations

Summary: In R2020b, you can check for these new types of defects.

Defect Description

A move operation may throw Throwing move operations might result in STL
containers using the corresponding copy
operations

Const std::move input may cause a more|Const std: :move input cannot be moved and

expensive object copy results in more expensive copy operation

Data race on adjacent bit fields Multiple threads perform unprotected operations

on adjacent bit fields of a shared data structure

Expensive std::string::c_str() use in |An std::string operation uses the output of an
a std::string operation std::string::c_str method, resulting in
inefficient code

Expensive constant std::string A const string object is constructed from

construction constant data resulting in inefficient code

Expensive copy in a range-based for The loop variable of a range-based for loop is

loop iteration copied from the range elements instead of being
referenced resulting in inefficient code

Expensive pass by value Functions pass large parameters by value instead
of by reference

Expensive return by value Functions return large output by value instead of
by reference

Incorrect value forwarding Forwarded object might be modified
unexpectedly

Missing constexpr specifier constexpr specifier can be used on expression

for compile-time evaluation

Noexcept function exits with exception|Functions specified as noexcept,
noexcept(true) or noexcept(<true
condition>) exit with an exception, which
causes abnormal termination of program
execution, leading to resource leak and security
vulnerability

std::move called on an unmovable type |Result of std::move is not movable

Throw argument raises unexpected The argument expression in a throw statement
exception raises unexpected exceptions, leading to resource
leaks and security vulnerabilities

See the full list of defect checkers in Defects.

Changes to coding rules checking

Summary: In R2020b, coding rules checking has improved across various coding standards:

2-15

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/amoveoperationmaythrow.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/conststd-moveinputmaycauseamoreexpensiveobjectcopy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/conststd-moveinputmaycauseamoreexpensiveobjectcopy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/dataraceonadjacentbitfields.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivec_strtostd-stringoperation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivec_strtostd-stringoperation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensiveconstantstd-stringconstruction.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensiveconstantstd-stringconstruction.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivecopyinarangebasedforloopiteration.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivecopyinarangebasedforloopiteration.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivepassbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivereturnbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/incorrectvalueforwarding.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/missingconstexprspecifier.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/noexceptfunctionexitswithexception.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/std-movecalledonanunmovabletype.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/throwargumentraisesunexpectedexception.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/throwargumentraisesunexpectedexception.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/defect-reference.html

R2020b

2-16

* The Polyspace checkers for AUTOSAR C++14 now follow AUTOSAR C++14 release 18-10

(October 2018).

* You can check for MISRA® C++ and JSF AV C++ rules in the same run. If the issues that you want
to detect span MISRA C++ and JSF AV C++, you can enable rules from both standards and detect

issues in a single run.

In addition, these changes have been made in the checking of previously supported rules.

Rule

Description

Change

MISRA C:2012 Dir 4.14

The validity of values received
from external sources shall be
checked.

The checker now use a broader
definition of valid data. The
following are no longer
considered as invalid data:

* Inputs to functions that do
not have a visible caller

¢ Return values of undefined
(stubbed) functions

* (Global variables external to
the unit

See Sources of Tainting in a
Polyspace Analysis. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

MISRA C:2012 Rule 1.1

The program shall contain no
violations of the standard C
syntax and constraints, and
shall not exceed the
implementation’s translation
limits.

The checker takes into account
header files irrespective of
whether you suppress headers
using the option Do not
generate results for (-
do-not-generate-results-
for).

For instance, the checker raises
a violation if the number of
macros in C99 code exceeds
4095. The checker now counts
macros in header files
irrespective of whether you
choose to suppress results in
headers. The reason is that the
header files are included in a
translation unit and the
translation unit as a whole is
subject to MISRA C: 2012 Rule
1.1. Previously, the headers
were taken into account only if
unsuppressed.

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2012dir4.14.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2012rule1.1.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Analysis Results

Rule

Description

Change

AUTOSAR C++14 Rule
A2-13-6

Universal character names shall
be used only inside character or
string literals.

The checker no longer flags
universal character names in
code deactivated with a
preprocessor directive such as
#1if. You can enter universal
character names for non-string
uses in deactivated code.

AUTOSAR C++14 Rule
A5-1-1

Literal values shall not be used
apart from type initialization,
otherwise symbolic names shall
be used instead.

The checker now flags use of
literal values as template
parameters.

MISRA C++:2008 Rule
2-10-2

Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope.

The checker no longer flags
class member operators in
nested scopes. Class member
operators in nested scopes do
not hide each other.

MISRA C++:2008 Rule
3-4-1

An identifier declared to be an
object or type shall be defined in
a block that minimizes its
visibility.

The checker no longer flags
identifiers used only in a range-
based for loop but defined
outside the loop.

AUTOSAR C++14 Rule
A21-8-1

Arguments to character-
handling functions shall be
representable as an unsigned
char.

The checker now only detects
the use of a signed or plain
char variable with a negative
value as argument to a
character-handling function
declared in ctype.h, for
instance, isalpha() or
isdigit().

MISRA C++:2008 Rule
14-6-2

The function chosen by overload
resolution shall resolve to a
function declared previously in
the translation unit.

The checker no longer flags
calls that use an underlying
function call operator.

MISRA C++:2008 Rule
17-0-1

Reserved identifiers, macros
and functions in the Standard
Library shall not be defined,
redefined or undefined.

The checker raises a violation if
you define or redefine a macro
beginning with an underscore
followed by an uppercase letter.
These macros are typically
reserved for the Standard
Library.

CERT C: Rec. PREO1-C

Use parentheses within macros
around parameter names.

The checker no longer flags
uses of the va_arg macro if the
macro parameters are not
enclosed in parentheses (in
accordance with the exception
in the CERT C specifications).

2-17

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea511.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule2102.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule2102.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule341.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule341.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2181.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea2181.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1462.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1462.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1701.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule1701.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.pre01c.html

R2020b

2-18

Rule

Description

Change

CERT C++: DCL51-CPP

Do not declare or define a
reserved identifier.

The checker now flags:

* Macros or identifiers
beginning with underscore
followed by an uppercase
letter.

* User-defined literal
operators if the operator
names do not begin with an
underscore (C++11 and
later).

By convention, these macros,
identifiers and operators are
reserved for the Standard
Library.

CERT C++: EXP52-CPP

Do not rely on side effects in
unevaluated operands.

The checker now flags
decltype operations where the
operands have side effects.

CERT
CERT

C: Rule EXP36-C and
C++: EXP36-C

Do not cast pointers into more
strictly aligned pointer types.

The checker now flags:
* Conversion of void* pointer
into pointer to object.

* Source buffer misaligned
with destination buffer.

CERT
CERT

C: Rule MSC39-Cand
C++: MSC39-C

Do not call va_arg() on a va _list
that has an indeterminate value.

The checker flags situations
where you might be using a
va_ list that has an
indeterminate value.

CERT
CERT

C: Rule MEM30-C and
C++: MEM30-C

Do not access freed memory.

The checker now flags attempts
to deallocate a previously freed
memory block.

CERT
CERT

C: Rule MEM35-C and
C++: MEM35-C

Allocate sufficient memory for
an object.

The checker now flags the use
of a pointer type as the
argument of the sizeof
operator in a malloc statement.
Use the type of the object to
which the pointer points as the
argument of the sizeof
operator.

CERT C: Rule EXP43-C

Avoid undefined behavior when
using restrict-qualified pointers.

The checker now detects
situations where you assign a
restrict qualified pointer to
another restrict qualified
pointer such that they both
attempt to point to the same
object.

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcdcl51cpp.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcexp52cpp.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleexp36c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcexp36c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemsc39c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmsc39c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemem30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleexp43c.html

Analysis Results

Rule

Description

Change

CERT C: Rule EXP46-C and
CERT C++: EXP46-C

Do not use a bitwise operator
with a Boolean-like operand.

The checker now flags the use
of bitwise operators, such as:
e Bitwise AND (&, &=)

* Bitwise OR (|, |=)

* Bitwise XOR (*, *=)

* Bitwise NOT(~)

with:

* Boolean type variables

* Outputs of relational or
equality expressions

CERT C: Rule STR37-Cand
CERT C++: STR37-C

Arguments to character-
handling functions must be
representable as an unsigned
char.

The checker now only detects
the use of a signed or plain
char variable with a negative
value as argument to a
character-handling function
declared in ctype.h, for
instance, isalpha() or
isdigit().

2-19

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleexp46c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcexp46c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulestr37c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcstr37c.html

R2020b

2-20

Rule

Description

Change

Coding rules that involve
detection of tainted data,
including:

CERT C: Rec. INTO4-C
CERT C: Rec. INT10-C

CERT C: Rule INT31-C
and CERT C++: INT31-C

CERT C: Rule INT32-C
and CERT C++: INT32-C

CERT C: Rule INT33-C
and CERT C++: INT33-C

CERT C: Rule ARR30-C
and CERT C++: ARR30-C

CERT C: Rule ARR32-C

CERT C: Rule ARR38-C
and CERT C++: ARR38-C

CERT C: Rec. STRO2-C

CERT C: Rule STR32-C
and CERT C++: STR32-C

CERT C: Rec. MEMO4-C
CERT C: Rec. MEMO5-C

CERT C: Rule MEM35-C
and CERT C++: MEM35-C

CERT C: Rule FI030-C
and CERT C++: FI030-C

CERT C: Rec. ENVO1-C
CERT C: Rec. MSC21-C
CERT C: Rec. WINOO-C

AUTOSAR C++14 Rule
A5-6-1

ISO/IEC TS 17961
[usrfmt]

ISO/IEC TS 17961
[taintstrcpy]

ISO/IEC TS 17961
[taintformatio]

ISO/IEC TS 17961
[taintsink]

The checkers now use a
narrower definition of tainted
data. The following are no
longer considered as tainted
data:

* Inputs to functions that do
not have a visible caller

* Return values of undefined
(stubbed) functions

* Global variables external to
the unit

See Sources of Tainting in a
Polyspace Analysis. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.int04c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.int10c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleint31c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcint31c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleint32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcint32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcruleint33c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcint33c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulearr30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcarr30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulearr32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulearr38c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcarr38c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.str02c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulestr32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcstr32c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.mem04c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.mem05c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulemem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcmem35c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrulefio30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcfio30c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.env01c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.msc21c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/certcrec.win00c.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea561.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulea561.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961usrfmt.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961usrfmt.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintstrcpy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintstrcpy.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintformatio.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintformatio.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintsink.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/isoiects17961taintsink.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html

Analysis Results

Rule

Description

Change

MISRA C++:2008 Rule
0-1-4 and AUTOSAR C++14
Rule MO-1-4

A project shall not contain non-
volatile POD variables having
only one use.

The checker now considers
dynamic assignments of a
variable, such as int var =
foo () as a single use of the
variable.

Some objects are designed to
be used only once by their
semantics. Polyspace does
not flag a single use of these
objects:

* lock guard

* scoped lock

* shared lock

* unique lock

* thread

o future

* shared future

If you use nonstandard
objects that provide similar
functionality as the objects in
the preceding list, Polyspace
might flag single uses of the
nonstandard objects. Justify
their single uses by using
comments.

Compatibility Considerations

If you checked your code for the preceding rules, you might see a change in the number of violations.

Updated Bug Finder defect checkers

Summary: In R2020b, these defect checkers have been updated.

2-21

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/autosarc14rulem014.html

R2020b

2-22

Defect

Description

Update

Tainted Data Defects

Use of tainted and unvalidated
data in critical operations

The checkers now use a
narrower definition of tainted
data. The following are no
longer considered as tainted
data:

* Inputs to functions that do
not have a visible caller

¢ Return values of undefined
(stubbed) functions

* Global variables external to
the unit

See Sources of Tainting in a
Polyspace Analysis. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

Deterministic random
output from constant
seed and Predictable
random output from
predictable seed

Issues with seeding of random
number generator functions

The checkers now support
random number generator
functions from the C++
Standard Library, for instance,
std::linear_congruential
_engine<>::seed() and
std::mersenne_twister en
gine<>::seed().

Large pass-by-value
argument

Functions pass large
parameters by value instead of
by reference

Checker is removed. Use
Expensive pass by value
and Expensive return by
value instead.

* Empty destructors may
cause unnecessary data
copies

* std::endl may cause an
unnecessary flush

Issues that impact performance
of C++ code

The Impact attribute of these
checkers has been changed
from High to Low.

These checkers do not have a
universally high criticality. The
checkers are critical only for
code that must be optimized for
performance.

https://www.mathworks.com/help/releases/R2020b/bugfinder/tainted-data-defects.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/sources-of-tainting-in-a-polyspace-analysis.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/consideranalysisperimeterastrustboundary.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivepassbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivereturnbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/expensivereturnbyvalue.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/std-endlmaycauseanunnecessaryflush.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/std-endlmaycauseanunnecessaryflush.html

Analysis Results

Defect

Description

Update

Inefficient string
length computation

Issue that impacts performance

of C++ code

The Impact attribute of this
checker has been changed from
High to Medium.

This checker does not have a
universally high criticality. The
checker is critical only for code
that must be optimized for
performance and also promotes
a good coding style.

Missing return statement

Issues with data flow

This checker flags nonvoid
functions that do not return the
flow of execution except if the
function is specified as
[[noreturn]].

Compatibility Considera

tions

If you check your code for the preceding defects, you might see a difference in the number of issues

found.

Updated code metrics specifications

Summary: In R2020Db, these code metrics specifications have been updated.

Code Metric

Number of Called Functions

Update
These metrics now accounts for function calls in a
C++ constructor initializer list.
For instance, in this code snippet, the number of
called functions of Derived: :Derived() is one.
Previously, the number was computed as zero.
class Base
{
int b;
public:
Base() {
b =0;
+
e
class Derived : public Base
{
int d;
public:
Derived() : Base() {
d =0;
+
e

2-23

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/inefficientstringlengthcomputation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/inefficientstringlengthcomputation.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/missingreturnstatement.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/numberofcalledfunctions.html

R2020b

Compatibility Considerations

If you compute these code metrics, you can see a difference in results compared to previous releases.

2-24

Reviewing Results

Reviewing Results

Results Export: Export Polyspace results to external formats such as
SARIF JSON

Summary: In R2020b, you can use the new polyspace-results-export command to export
Polyspace results to formats such as JSON and CSV.

* The JSON object follows the Static Analysis Results Interchange Format or SARIF notation.

* The CSV file has the same fields as produced by using the earlier polyspace-report-
generator command with the -generate-results-list-file option.

Use the polyspace-report-generator command to generate PDF or Word reports in a
predefined format. To package results using your own format, export them using the polyspace-
results-export command and read the resulting JSON object or CSV file.

You can use this command with results generated locally or with results uploaded to Polyspace
Access.

See also polyspace-results-export.

Benefits: Using the JSON object or CSV file, you can display results in a convenient format. For
instance, you can group defects found by Bug Finder based on their impact. Because the JSON object
follows a standard notation, you can also use this format to display Polyspace results with results
from other tools.

Simulink Block Annotation: Annotate Simulink blocks from Polyspace
user interface to justify Polyspace results

Summary: In R2020b, you can annotate a Simulink block directly from the Polyspace user interface.
See Annotate Blocks to Justify Issues (Polyspace Code Prover).

Benefits: Previously, when annotating a check on generated code from the Polyspace user interface,
you had to locate the corresponding block in the Simulink Editor and annotate the block again.
Starting in R2020b, you can annotate a check in the Polyspace user interface and have the
annotations carry over to the Simulink blocks by using the traceable elements of the code. You do not
have to go back to the model to re-enter the annotation.

User Authentication: Use a credentials file to pass your Polyspace
Access credentials at the command line

Summary: In R2020Db, if you use a command that requires your Polyspace Access credentials, you
can save these credentials in a file that you pass to the command. If you use that command inside a
script, you no longer need to store your credentials in the script.

To create a credentials file, enter a set of credentials, either as -1login and -encrypted-password
entries on separate lines, for example:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

2-25

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspaceresultsexport.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ug/run-polyspace-analysis-in-simulink.html#mw_2882853c-552d-47c9-af1f-78a80f2f9059

R2020b

2-26

Or as a -api-key entry:
-api-key keyValuel23

For more information on generating API keys, see Configure User Manager (Polyspace Bug Finder
Access) (Polyspace Code Prover Access).

Save the file and pass it to the command by using the -credentials-file flag. You can use the
credentials file with these Polyspace commands:

* polyspace-access

* polyspace-results-export

* polyspace-report-generator

For increased security, restrict the read/write permissions for the credentials file.

Benefits: Previously, you could provide your Polyspace Access credentials in a script only by passing
them directly to the command. Starting R2020b, when the command that requires the credentials
runs, someone who is inspecting currently running processes, for instance, by using the command ps
aux on Linux, can no longer see your credentials.

Importing Review Information: Accept information in source or
destination results folder in case of merge conflicts

Summary: In R2020b, when importing review information such as severity, status, and comments at
the command line, if the same result has different review information in the source and destination
folder, you can choose one of the following:

* That the review information in the destination folder is retained.

This behavior is the default behavior of the polyspace-comments-import command.

» That the review information in the source folder overwrites the information in the destination
folder.
You can switch to this behavior using the new option -overwrite-destination-comments.

See also polyspace-comments-import.

Benefits: Previously, newer review information in the destination folder was retained and could not
be overwritten. Now, when merging review information, you can choose whether the source or
destination folder takes precedence in case of merge conflicts.

Source Code Tooltips: Display information related to only the currently
selected defect

Summary: In R2020b, Bug Finder tooltips show only information that is necessary to understand the
currently selected defect, such as:

» Data types of variables that lead to the current defect.

* One specific value of an input variable that leads to the current defect, if you enable the option
Run stricter checks considering all values of system inputs (-checks-using-
system-input-values)

https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/gs/configure-the-user-manager.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_server/ref/polyspaceresultsexport.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_server/ref/polyspacereportgenerator.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/polyspacecommentsimport.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html

Reviewing Results

In this tooltip, you see that the input parameter is a 32-bit int and the value -49 leads to the currently
selected defect.:

short bug intconwovil (int th) |

1 lue; .
e TR Parameter th (int 32): 40

if {th = 42} | i
""" - | Palue related to selected defzct.
valus = Ox0O0FE€FOOL;

Press "F2" for foous

} slase |
value = 0x00BEEBOOL;
1
return valusp /% Defect: Integer d

Previously, tooltips showed range information such as all possible values of a specific variable in the
given context. You can still see this range information in Code Prover.

Benefits: In Bug Finder, tooltips do not appear on any line other than ones related to the current
defect. When they appear, they contain only information required to understand the currently
selected defect.

Functionality being removed: Polyspace Metrics

Summary: The Polyspace Metrics web dashboard will be removed in a future release.

Compatibility Considerations

To continue monitoring the quality of your code in a web browser, use Polyspace Access instead. In
addition to a more intuitive dashboard, with Polyspace Access you can:
* Review and justify results directly from your web browser.

* Integrate a bug tracking tool such as Jira with the web interface and create tickets to track
Polyspace findings.

* Monitor the quality of your code against coding standards such as AUTOSAR C++14, CERT® C/C
++, and MISRA C.

* Define custom Quality Objectives definitions and apply them to specific projects.
For more information, see Polyspace Bug Finder Access .

See also Migrate Results from Polyspace Metrics to Polyspace Access (Polyspace Bug Finder Access)
(Polyspace Code Prover Access).

2-27

https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/index.html
https://www.mathworks.com/help/releases/R2020b/polyspace_bug_finder_access/gs/migrate-results-from-polyspace-metrics-to-polyspace-access.html

R2020a

Version: 3.2
New Features
Bug Fixes

Compatibility Considerations

R2020a

Analysis Setup

3-2

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers

Summary: If you build your source code by using MPLAB XC8 C compilers, in R2020a, you can
specify the compiler name for your Polyspace analysis.

Target Environment

Compiler microchip e

Target processor type |pic o

See also MPLAB XC8 C Compiler (-compiler microchip).

Benefits: You can now set up a Polyspace project without knowing the internal workings of MPLAB
XC8 C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16
and XC32 compilers

Summary: If you use MPLAB XC16 or XC32 compilers to build your source code, in R2020a, you can
easily emulate these compilers by using the Polyspace GCC compiler options. See Emulate Microchip
MPLAB XC16 and XC32 Compilers.

For each compiler, you can emulate these target processor types:

*+ MPLAB XC16: Targets PIC24 and dsPIC.
*+ MPLAB XC32: Target PIC32.

Benefits: You can copy the analysis options required for emulating MPLAB XC16 or XC32 compilers
and paste into your Polyspace options file (or specify in a Polyspace project in the user interface), and
avoid compilation errors from issues specific to these compilers.

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors

Summary: In R2020a, if your source code contains non-ASCII characters, for instance, Japanese or
Korean characters, the Polyspace analysis can interpret the characters and later display the source
code correctly.

If you still have compilation errors or display issues from non-ASCII characters, you can explicitly
specify your source code encoding using the option Source code encoding (-sources-
encoding).

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/mplabxc8ccompilercompilermicrochip.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/sourcecodeencodingsoucesencoding.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/sourcecodeencodingsoucesencoding.html

Analysis Setup

Modifying Checkers: Create list of functions to prohibit and check for
use of functions from the list

Summary: In R2020a, you can define a blacklist of functions to forbid from your source code. The
Bug Finder checker Use of a forbidden function checks if a function from this list appears in
your sources.

Benefits: A function might be blacklisted for one of these reasons:

* The function can lead to many situations where the behavior is undefined leading to security
vulnerabilities, and a more secure function exists.

You can blacklist functions that are not explicitly checked by existing checkers such as Use of
dangerous standard functionorUse of obsolete standard function.

* The function is being deprecated as part of a migration, for instance, from C++98 to C++11.

As part of a migration, you can make a list of functions that need to be replaced and use this
checker to identify their use.

See also Flag Deprecated or Unsafe Functions Using Bug Finder Checkers.

Simulink Support: Analyze custom C code in C Function blocks

Summary: In R2020a, Polyspace can check custom C code in C Function blocks for bugs and run-
time errors.

The analysis checks the C code in context of the model. In other words, the analysis uses design
ranges and other context information specified in the model.

To analyze custom C code in C Function block, select Custom Code Used in Model instead of Code
Generated as Top Model (meant for generated code) on the Polyspace tab in Simulink and then
start the analysis. In addition to functions called from C Caller blocks and Stateflow charts, the
custom code in C Function blocks are also checked for run-time errors. See Run Polyspace Analysis
on Custom Code in C Function Block.

Benefits: The Polyspace analysis of custom code now includes individual scripts in C Function blocks
(block introduced in Simulink in R2020a). In a single run, you can analyze all handwritten C code
invoked from your model and check for bugs, run-time errors or coding rule violations.

Changes in analysis options and binaries

Option -function-behavior-specifications renamed to -code-behavior-specifications and
capabilities extended
Warns

The option - function-behavior-specifications has been renamed to - code-behavior-
specifications.

Using this option, you could previously map your functions to standard library functions to work
around analysis imprecisions or specify thread creation routines. Now, you can use the option to
define a blacklist of functions to forbid from your source code.

See also -code-behavior-specifications.

3-3

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofaforbiddenfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/useofobsoletestandardfunction.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/flag-deprecated-functions-using-bug-finder-checkers.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/run-polyspace-analysis-on-custon-code-in-c-function-block.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/run-polyspace-analysis-on-custon-code-in-c-function-block.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/codebehaviorspecifications.html

R2020a

Changes in MATLAB functions, options object and properties

polyspaceBugFinderNodesktop removed
Errors

Use polyspaceBugFinder(projectFile, '-nodesktop') instead of
polyspaceBugFinderNodesktop(projectFile).

pslinksetup removed
Errors

Use polyspacesetup instead of pslinksetup to integrate between Polyspace and Simulink (in the
same release or across releases). See Integrate Polyspace with MATLAB and Simulink.

3-4

https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html

Analysis Results

Analysis Results

Extending Checkers: Run stricter analysis that considers all possible

values of system inputs

Summary: In R2020a, you can run a stricter Polyspace Bug Finder analysis that checks the
robustness of your code against specific values of system inputs. For defects that are detected with
the stricter checks, the analysis can also show an example of values that lead to the defect. Use the
option Run stricter checks considering all values of system inputs (-checks-
using-system-input-values) to enable the stricter checks.

%

Bug_Finder_Example X

[~ Target & Compiler
Macros
“ Environment Settings
----- Inputs & Stubbing
----- Multitasking
----- Coding Standards & Code Metrics
- Code Prover Verification
> Verification Assumptions
Check Behavior
Precision
‘- Sealing
----- Reporting
----- Run Settings
----- Advanced Settings

Bug Finder Analysis

Find defects default

= Defects

Mumerical

Static memary
Dynamic memary
Data flow
Resource management
Programming
Concurrency
Security
Cryptography
Tainted data

Good practice

Run stricter checks considering all values of system inputs

Consider inputs to these functions | auto

Benefits: For a subset of Numerical and Static memory defect checkers, the analysis considers all

possible values of:

* Global variables
* Reads of volatile variables
* Returns of stubbed functions

» Inputs to the functions you specify with the option Consider inputs to these functions

(-system-inputs-from)

See also Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/considerinputstothesefunctionssysteminputsfrom.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/considerinputstothesefunctionssysteminputsfrom.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ug/extend-polyspace-bug-finder-checkers-to-detect-numerical-edge-cases.html

R2020a

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes,
special member functions, overloading and other groups

Summary: In R2020a, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-5 There shall be no unused named [AUTOSAR C++14 Rule
parameters in the set of A0-1-5

parameters for a virtual function
and all the functions that
override it.

A2-3-1 Only those characters specified |AUTOSAR C++14 Rule
in the C++ Language Standard |A2-3-1

basic source character set shall
be used in the source code.

A2-7-1 The character \ shall not occur |AUTOSAR C++14 Rule
as a last character of a C++ A2-7-1
comment.

A2-10-1 An identifier declared in an AUTOSAR C++14 Rule

inner scope shall not hide an A2-10-1
identifier declared in an outer

scope.
A2-10-6 A class or enumeration name AUTOSAR C++14 Rule
shall not be hidden by a A2-10-6

variable, function or enumerator
declaration in the same scope.

A2-13-4 String literals shall not be AUTOSAR C++14 Rule
assigned to non-constant A2-13-4
pointers.

A2-13-6 Universal character names shall |[AUTOSAR C++14 Rule

be used only inside character or |A2-13-6
string literals.

A3-3-2 Static and thread-local objects |[AUTOSAR C++14 Rule
shall be constant-initialized. A3-3-2
A4-5-1 Expressions with type enum or |AUTOSAR C++14 Rule

enum class shall not be used as |A4-5-1
operands to built-in and
overloaded operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=,

3-6

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea015.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea015.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea271.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea271.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2134.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2134.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea332.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea332.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea451.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea451.html

Analysis Results

AUTOSAR C++14 Rule Description Polyspace Checker

A4-10-1 Only nullptr literal shall be used [AUTOSAR C++14 Rule
as the null-pointer-constraint. |A4-10-1

A7-1-3 CV-qualifiers shall be placed on |AUTOSAR C++14 Rule
the right hand side of the type |A7-1-3
that is a typedef or a using
name.

A7-1-8 A non-type specifier shall be AUTOSAR C++14 Rule
placed before a type specifier in |A7-1-8
a declaration.

A7-4-1 The asm declaration shall not be |AUTOSAR C++14 Rule
used. A7-4-1

A8-2-1 When declaring function AUTOSAR C++14 Rule
templates, the trailing return A8-2-1
type syntax shall be used if the
return type depends on the type
of parameters.

A8-5-3 A variable of type auto shall not |AUTOSAR C++14 Rule
be initialized using {} or ={} A8-5-3
braced-initialization.

A10-1-1 Class shall not be derived from |AUTOSAR C++14 Rule
more than one base class which |A10-1-1
is not an interface class.

A10-3-1 Virtual function declaration AUTOSAR C++14 Rule
shall contain exactly one of the |Al1l0-3-1
three specifiers: (1) virtual, (2)
override, (3) final.

A10-3-2 Each overriding virtual function [AUTOSAR C++14 Rule
shall be declared with the Al0-3-2
override or final specifier.

A10-3-3 Virtual functions shall not be AUTOSAR C++14 Rule
introduced in a final class. Al0-3-3

A10-3-5 A user-defined assignment AUTOSAR C++14 Rule
operator shall not be virtual. Al10-3-5

A11-0-2 A type defined as struct shall: |AUTOSAR C++14 Rule
(1) provide only public data All-0-2

members, (2) not provide any
special member functions or
methods, (3) not be a base of
another struct or class, (4) not
inherit from another struct or
class.

https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea4101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea4101.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea713.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea713.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea718.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea718.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea741.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea741.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea821.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea821.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea853.html
https://www.mathworks.com/help/releases/R2020a/bugfinder/ref/autosarc14rulea853.html
https://www.mathworks.com/help/releases/R2020a/bugf